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Chapter 1
Solutions

No questions to answer for this chapter.
I assume throughout the book that the reader already defined all the user defined
functions in each chapter before attempting the questions at the end of the chapter.
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Chapter 2
Solutions

2.1 Original Question
Compute and report values of RGOA assuming # = 20, for a growth rate of
6 = 1%, 2%, 3% under E = 4%. Notice the pattern. What happens when you plug-in
6 = 4%? Why do you get this result?
Answer
I use the RGOA function from the chapter and I plug in a vector of 6 = 1%, 2%, 3%
in place of a single value of 6.

> RGOA(c(0.01,0.02,0.03),0.04,20)
[1] 14.91841 16.41348 18.09858

I see that as the growth rate increases, the present value of the annuity increases as
well, because cash flows are higher. Now I check what happens when I plug in
6 = 4%.

> RGOA(0.04,0.04,20)
[1] NaN

Because v=g the denominator of the RGOA function equals zero making the analytic
formula indeterminate. R is using equation 2.1 in the chapter to solve the problem,
which is why it gets stuck when both v and g equal to 0.04. To solve for the value of
the annuity when v=g I must go back to first principles. To obtain the formula for
the present value of an ordinary annuity, I use the equation for the sum of a
geometric progression.

.# = - + -2 + -3 + ... + -# =

#∑
8=1

- 8

Where - can be any number not equal to zero. Using some manipulation, by
multiplying all the terms by - and subtracting it from .# I get:
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.# − -.# =

#∑
8=1

- 8 −
#∑
8=1

- 8+1

Other than the first and last term, all the terms in the summations on the right side
cancel each other out, so I get:

.# − -.# = - − -#+1

Rearranging to isolate .# and dividing by X gives me:

.# (1 − -) = - − -#+1

Dividing both sides by 1 − -:

.# =
- − -#+1

1 − -

Dividing the numerator and denominator of the fraction by -:

.# =
1 − -#

1
-
− 1

Replacing X with 1+6
1+E gives the formula for the present value of an ordinary annuity:

.# =
1 − (1 + 6)# (1 + E)−#
(E − 6)/(1 + 6)

This equation works when E ≠ 6. However, when E = 6 I can just sum the terms as
in the geometric series:

.# =
(1 + 0.04)1
(1 + 0.04)1

+ (1 + 0.04)2
(1 + 0.04)2

+ ... (1 + 0.04)#
(1 + 0.04)#

Each of the individual terms would equal 1, leaving me with # × 1 which gives me
the answer of N. Intuitively this means that if my cash-flows grow at the same rate
that the value of money gets discounted over time, then the growth cancels out the
discounting, and the value of the annuity is just the dollar sum of all the payments.

2.2 Original Question
Write a function that computes the present value of an ordinary annuity (similar to
the RGOA function) that only starts growing after " ≤ # periods. Call it RGOA.DM
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So, for the first " periods there is no growth and then cash-flows start growing by 6
per period, until time period # . Evaluate this function with parameters " = 10
years, # = 20 years, 6 = 2% and E = 3% and compare with the value of RGOA in
which 6 = 2%, E = 3% and explain the difference.
Answer
To create this function, I add the value of two annuities together. The first annuity is
an " year zero-growth annuity. The second annuity is an # − " year growing
annuity, which I discount back " years to time 0.

RGOA.DM<-function(g,v,N,M){
((1-(1+v)^(-M))/v)+((1-((1+g)^(N-M))*(1+v)^(-N+M))
/((v-g)/(1+g)))/(1+v)^M

}

I use my RGOA.DM function with # = 20 years, " = 10 years, 6 = 2%, E = 3%.

> RGOA.DM(0.02,0.03,20,10)
[1] 15.58516

I now use the ordinary RGOA function with # = 20 years, 6 = 2%, E = 3%.

> RGOA(0.02,0.03,20)
[1] 18.08123

I see that the RGOA.DM has a lower value. This is because RGOA grows for all 20
years, while RGOA.DM only grows for 10 years, and its growth begins later, so the
cash-flow payments are lower in the RGOA.DM.

2.3 Original Question
Write a function that computes the future value of an ordinary annuity, and call it
RGOA.FV. Evaluate this function with parameters: # = 20 years, 6 = 2% and
E = 3%.
Answer
I create a function RGOA.FV based off the formula for the future value of an ordinary
annuity. The future value annuity factor, given 6,E,# is equal to the following sum:

�+ = (1 + 6) (1 + E)#−1 + (1 + 6)2 (1 + E)#−2 + ... + (1 + 6)#

The first term represents the future value at time # of the 1 + 6 cash-flow received
after one period, the second term is the future value of (1 + 6)2 which is received
after the second period and invested for (N-2) periods, and so on. After some
rearranging the formula can be expressed as follows:

�+ =
(1 + E)# − (1 + 6)#

(E − 6)/(1 + 6)
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I got this by multiplying the regular RGOA function by (1 + E)#

(1 + E)# RGOA = (1 + E)# × 1 − (1 + 6)# (1 + E)−#
(E − 6)/(1 + 6) =

(1 + E)# − (1 + 6)#

(E − 6)/(1 + 6)

I now code this function which takes in values for g,v and N.

> RGOA.FV<-function(g,v,N){(((1+v)^N-(1+g)^N))/((v-g)/(1+g))}

I evaluate this function with parameters: 6 = 2%, E = 3%, # = 20.

> RGOA.FV(0.02,0.03,20)
[1] 32.65671

Alternatively, I can multiply the original RGOA function by (1 + E)# and get the
same result.

> RGOA(0.02,0.03,20)*(1+0.03)^20
[1] 32.65671

I compare the future value to the present value of the same RGOA at time 0.

> RGOA(0.02,0.03,20)
[1] 18.08123

I see that an annuity that would costs me 18.08 now, will cost me 32.66 if I pay for
it in 20 years.

2.4 Original Question
You are G = 65 years-old and entitled to an income (cash-flow, pension) of $1, 000
per month for the rest of your life. Assuming E = 3%, what is the present value of
that pension if you live to age 95? What is the present value if you live to age 100?
What is the extra cost of those five years?
Answer
I use E = 3/12 = 0.25% as my monthly valuation rate.

> x<-65
> v<-3/12
#months until age 95
> N1<-(95-x)*12
#months until age 100
> N2<-(100-x)*12
> 1000*RGOA(0,v,N1)
[1] 237189.4
> 1000*RGOA(0,v,N2)
[1] 259841.4
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If I die at age 95, the present value of my pension is $237, 189. but if I die at age
100 then the present value is $259, 841. The extra cost of those 5 years is $22, 652,
even though I am spending an extra $60, 000 ($12, 000 each year). This tells me the
significance of the time value of money, and how a small investment today can go a
long way in the distant future.

2.5 Original Question
Assume that you have 100 “units” of something (think of dollars, euros, yen or
people who are infected with a virus). Every day that number grows (think of
interest rates) by 30%. At the end of the first day you have 130 units, at the end of
the second day you have 100 × (1.3)2 units, etc. In how many days will you have
300 million units?
Answer
Let*B be the number of units I start with, and* 5 be the number of units I finish
with. Let 6 be my daily growth rate, and C be the number of days that past.

* 5 = *B (1 + 6)C

I rearrange to solve for C.

* 5

*B

= (1 + 6)C

C × ;=(1 + 6) = ;=(
* 5

*B

)

C =
;=(* 5

*B
)

;=(1 + 6)

I calculate C using this equation and our values in R.

> log(300000000/100)/log(1.3)
[1] 56.8451

It would take approximately 57 days to have 300 million units if I start with 100
units and grow at 30% a day. Exponential growth accumulates quickly.





Chapter 3
Solutions

3.1 Original Question
Build an expanded version of the SMCR function, which you can label SMCR.PN,
which assumes that you are entitled to a government pension (for example Social
Security) of c times your final wage F'. So, for example, if you final wage is
F' = 100,000 per year, you might be entitled to a guaranteed pension of
c = (0.60) of you final 100,000 salary between the ages of (for example) ' = 65
and � = 95. So, please compute some values for the SMCR.PN function.
Answer
The original SMCR function divides the present value of wealth and all future
income by the ordinary annuity factor representing all future spending.

SMCR =
F'�$�(6, E, ' − G) + 5
'�$�(0, E, � − G)

To create SMCR.PN I add the present value of the pension to the total wealth and
present value of future wages.

SMCR.PN =
F'�$�(6, E, ' − G) + 5 + c 5?

'�$�(0, E, � − G)

Where 5? is the present value of a pension whose annual payment is my final wage
at retirement. The present value of my pension is c 5? , since the pension I am
entitled to pays c times my final wage. To calculate 5? , first I must calculate my
final salary F':

F' = F(1 + 6)'−G

I calculate the present value of a pension that will pay F' each year after retirement.

5? =
F' × '�$�(0, E, � − ')

(1 + E)'−G
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I now have all the components I need to code SMCR.PN in R.

SMCR.PN<-function(x,f,w,g,v,R,D,pi){
#wR is the final salary
wR<-(w*(1+g)^(R-x))
#fp is present value of pension
fp<-wR*RGOA(0,v,D-R)/(1+v)^(R-x)
consumption<-(w*RGOA(g,v,R-x)+f+fp*pi)/RGOA(0,v,D-x)
return(consumption)}

I test my function using the following parameters: G = 35, 5 = 0, F = 60000,
6 = 0.01, E = 0.04, ' = 65, � = 95, ? = 0.6.

> SMCR.PN(35,0,60000,0.01,0.04,65,95,0.6)
[1] 63617.53

Notice that my smooth consumption rate is higher than my initial wage. This means
I can borrow money in my early years to finance my spending. I now try the same
example but with no pension.

> SMCR.PN(35,0,60000,0.01,0.04,65,95,0.0)
[1] 52182.7

In the absence of a pension I must reduce my annual spending by $11, 434.84. I
now check what happens if I start working (and spending and saving) at other ages
of G = 20 and G = 45.

#starting at 20 with a pension
> SMCR.PN(20,0,60000,0.01,0.04,65,95,0.6)
[1] 69493.01
#starting at 20 without a pension
> SMCR.PN(20,0,60000,0.01,0.04,65,95,0.0)
[1] 62450.61
#starting at 45 with a pension
> SMCR.PN(45,0,60000,0.01,0.04,65,95,0.6)
[1] 57804.61
#starting at 45 without a pension
> SMCR.PN(45,0,60000,0.01,0.04,65,95,0.0)
[1] 41667.31

If I start working earlier, I can allow myself to spend more each year regardless of
pension value. Also, the difference the pension makes to my annual spending when
I am 45 is larger than when I am 20 ($16,137 at 45 vs $7,042 at 20), because the
value of the pension needs to be distributed over a shorter remaining lifetime.
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3.2 Original Question
Continuing the above line of thinking, assume the same c pension rate, now create
a new function OLCF.PN for the amount of financial capital you should have
accumulated at any age G. Compute this multiple assuming you enter the
work-force at age G0 = 25, earn F25 = 50000 in your first year of work, it grows by
6 = 1% per year until you retire at age ' = 62. Assume you (plan to) live to age
� = 95, the valuation rate is E = 2.5% and the pension rate is c = 35% of your final
salary. Of course, there is an implicit assumption here that you are entitled to keep
your entire wage FG and that you don’t pay any tax (or pension contributions)
which go towards funding the entitlement of c.
Answer
The OLCF.PN function I create is similar to the OLCF function in the chapter, but
with two differences. It uses SMCR.PN defined in the previous question instead of
SMCR, and it also subtracts the present value of the pension.

OLCF.PN<-function(x,x0,f0,w0,g,v,R,D,pi){
if (x<=R){
#consumption with pension
PVC<-SMCR.PN(x0,f0,w0,g,v,R,D,pi)*RGOA(0,v,D-x)
#human capital
HC<-((w0*(1+g)^(x-x0))*RGOA(g,v,R-x))
#present value of pension
PVP<-(pi*(w0*(1+g)^(R-x0))*RGOA(0,v,D-R))/(1+v)^(R-x)
#financial capital saved up
Fx<-PVC-HC-PVP
return(Fx)}

else{
SMCR.PN(x0,f0,w0,g,v,R,D,pi)*RGOA(0,v,D-x)-
(pi*(w0*(1+g)^(R-x0))*RGOA(0,v,D-x))}}

I define my notation before I explain my calculation. PVC is the present value of all
future consumption. HC is Human capital or the present value of future wages. PVP
is the present value of the future pension payments. The way OLCF.PN is
calculated, depends on the persons age x, if G ≤ ':

OLCF.PN = PVC − HC − PVP

If G > ' then human capital is zero because I am no longer working, so the
financial capital I should have is the present value of my future consumption
subtracting the present value of whats left of my pension:

OLCF.PN = PVC − PVP

I run OLCF.PN for the parameters given in the question:
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> OLCF.PN(35,25,0,50000,0.01,0.025,62,95,0.35)
[1] 31697.94

At age 35 I need to have $31,698 accumulated, assuming I will receive a pension
that is 35% of my final wage. How does that compare to a situation where I have no
pension?

> OLCF.PN(35,25,0,50000,0.01,0.025,62,95,0.0)
[1] 108695

I see that if I had no pension (c = 0) I would need to have saved more than three
times the amount I must save when I have a pension. Having a pension drastically
reduces the amount I must save.

3.3 Original Question
Create a function FCWM.PN, which computes the multiple of your wage that you
should have saved-up at any age G, assuming you are entitled to a pension of c at
retirement. Assuming the same 6 = 1%, E = 2.5% numbers (which were the basis
for the above table), please locate scenarios (i.e. values of F, ' or �) where there is
no need to accumulate (or save) any money for retirement, because the pension of
c = 60% will be enough to finance a constant smooth consumption plan.
Answer
To solve for the wage multiple �G/FG while including a pension, I modify the
original FCWM function to include a pension. From the previous question, I know the
equation for �G including a pension is:

Fx = PVC − HC − PVP

The present value of future consumption is:

PVC = c(RGOA(0, v, D − x));

Future annual consumption is:

c =
w0 (RGOA(g, v, R − x0)) + PVP0

RGOA(0, v, D − x0)

At time 0, the present value of the pension I will receive after retirement is:

PVP0 =
cw0 (1 + g) (R−x0)RGOA(0, v, D − R)

(1 + v) (R−x0)



3 Solutions 13

My human capital is the present value of my future wages:

HC = wx (RGOA(g, v, R − x))

The present value of my pension is:

PVP =
c(wx (1 + g) (R−x)RGOA(0, v, D − R))

(1 + v) (R−x)

Also note that:
F0
FG

= (1 + 6) (G0−G)

Dividing through by FG , I are left with the wage multiple:

(
Fx
wx

)
= (1 + g) (x0−x) RGOA(0, v, D − x) (RGOA(g, v, R − x0))

RGOA(0, v, D − x0)

+c(1 + 6)
('−G)RGOA(0, v, D − R) (RGOA(g, v, D − x))
(1 + v) (R−x0)RGOA(0, v, D − x0)

−RGOA(g, v, R − x)

−c(1 + g)
R−xRGOA(0, v, D − R)
(1 + v)R−x

The first line of the equation is the part of future consumption that is due to wages.
The second line is the part of future consumption that is due to the pension. The
third line is the present value of future wages. The fourth line is the present value of
the pension I will receive. Note that I don’t need to consider times when G > '
since wages are 0 so FCMW is undefined. I code this up in R:

FCMW.PN<-function(x,x0,g,v,R,D,pi){
#first numerator of PVC
PVC1N<-((1+g)^(x0-x))*RGOA(0,v,D-x)*RGOA(g,v,R-x0)
#first denominator of PVC
PVC1D<-RGOA(0,v,D-x0)
#second numerator of PVC
PVC2N<-pi*((1+g)^(R-x))*RGOA(0,v,D-R)*RGOA(g,v,D-x)
#second denominator of PVC
PVC2D<-((1+v)^(R-x0))*RGOA(0,v,D-x0)
PVC<-(PVC1N/PVC1D)+(PVC2N/PVC2D)
HC<-RGOA(g,v,R-x)
PVP<-pi*((1+g)^(R-x)*RGOA(0,v,D-R))/(1+v)^(R-x)
return(PVC-HC-PVP)}
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To find scenarios where I don’t need to save for retirement, I loop through different
retirement ages and death ages to find where the value of the wage multiple is zero.
If the value is zero, it means that if I retire at age R and die at age D, I do not need to
save for retirement since the amount I are receiving from my pension is sufficient.

R<-list()
D<-list()
z<-list()
#loop over possible R values
for (i in 30:110){
#loop over possible D values
for (j in 70:130){
n<-FCMW.PN(i,25,0.01,0.025,i,j,0.6)
#check if FCMW.pn is close to 0, and if R<D
if (n>-.005 & n<.005 & i<j){
z <- append(z, n)
R <- append(R,i)
D <- append(D,j)}}}

q<-as.matrix(cbind(R,D,z))

In this R script I am using a new object called list to store values. This object does
not appear in the textbook, but its useful when solving problems where lists of
values must be stored. I also use two other functions as.matrix and cbind which
help me combine lists into a table so the relationships can be easily presented. I
include the column z to show how close FCMW.PN is to 0. Here is the output.

> q
R D z

[1,] 107 108 0.001585261
[2,] 107 109 0.003204122
[3,] 107 110 0.004912605
[4,] 108 109 -0.002752728
[5,] 108 125 -0.002093542
[6,] 108 126 0.001614958

I have to work for at least 82 years if my pension is 60% of my final wage (c = 0.6)
and I want to retire without any savings. Working till 107 is obviously ridiculous,
so I conclude that it is not feasible to retire without savings assuming these values
of G0, 6, E, and c.

3.4 Original Question
You earn F = $100,000 per year, the valuation rate is E = 4%, wage growth rate is
6 = 0, you are G = 35 and have nothing saved 5 = 0. Please locate values of (', �)
that result in �' = $1,000,000. In other words, find situations in which you really
do need one million dollars to retire.
Answer
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I try to solve this in two ways, either by finding ' as a function of � and plugging
in different values, or by simulating many possible ' and � values and seeing
which combinations require 1 million at retirement. Trying the first way:
Present value of consumption during retirement must equal $1 million:

c∗
(1 − 1.04−(D−R) )

.04
= 1, 000, 000 (3.1)

After some manipulation:
c∗ =

40, 000

1 − 1.04−(D−R)
(3.2)

PV of Human Capital must equal PV of consumption, which leads to:

c∗
(1 − 1.04−(D−35) )

.04
= 100, 000

(1 − 1.04−(R−35) )
.04

(3.3)

I know c∗= 40,000
1−1.04−(D−R) , which leads to:

40, 000(1 − 1.04−(D−35) )
.04(1 − 1.04−(D−R) )

= 100, 000
(1 − 1.04−(R−35) )

.04
(3.4)

2(1 − 1.04−(D−35) )
1 − 1.04−(D−R)

= 5(1 − 1.04−(R−35) ) (3.5)

1 − 1.04−(D−35) = 2.5(1 − 1.04−(R−35) ) (1 − 1.04−(D−R) ) (3.6)

1 − 1.04−(D−35) = 2.5(1 − 1.04−(R−35) − 1.04−(D−R) + 1.04−(D−35) ) (3.7)

0 = 1.5 − 2.5(1.04−(R−35) + 1.04−(D−R) ) + 3.5(1.04) (−D−35) (3.8)

At this point it is very difficult to isolate ' since the relationship between ' and �
is non-linear, which leads me to try the alternate way of solving this problem, using
the OLCF function in R.

R<-list()
D<-list()
z<-list()
#loop over possible R values
for (i in 48:75){
#loop over possible D values
for (j in 80:120){
n<-OLCF(i,35,0,100000,0.0,0.04,i,j)
#check if OLCF is close to 1,000,000
if (n>998000 & n<1002000){
z <- append(z, n)
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R <- append(R,i)
D <- append(D,j)}}}

q<-as.matrix(cbind(R,D,z))

This script shows the combinations of ' and � that require $1 million to retire
(give or take $2,000). Here is the output.

R D z
[1,] 49 103 998621.1
[2,] 49 104 1000999
[3,] 50 91 1000415
[4,] 51 85 998654.1
[5,] 52 82 999713.9
[6,] 65 82 999713.9
[7,] 69 85 998654.1

I see that if I retire later I need to die earlier, in order for my optimal savings at
retirement to be $1 million. The intuition is that the more years I will work, the
higher my smooth consumption rate will be. A higher smooth consumption rate
means I must spend less years in retirement (die earlier) for the present value of my
retirement spending to be $1 million at the time I retire.

3.5 Original Question
Similar to question (3.4), assume (' = 65, � = 100) but modify the wage growth
rate 6 and the valuation rate E, and locate parameters for which you need one
million dollars to retire.
Answer
Similarly to 3.4, I wrote an R script to test different combinations of v and g using
the OLCF function.

G<-list()
V<-list()
z<-list()
#loop over possible g values
for (g in 1:100*.001){
#loop over possible v values
for (v in 1:100*.001){
if (g!=v){
n<-OLCF(65,35,0,100000,g,v,65,100)
#check if OLCF is close to 1,000,000
if (n>998000 & n<1002000){
z <- append(z, n)
G <- append(G,g)
V <- append(V,v)}}}}

q<-as.matrix(cbind(G,V,z))
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Here is the output.

G V z
[1,] 0.002 0.09 999892.8
[2,] 0.005 0.094 998716
[3,] 0.006 0.095 1000751
[4,] 0.009 0.099 998873.6
[5,] 0.01 0.1 1000730

I see that for higher E I need higher 6 values, assuming I need one million dollars at
retirement, ' = 65, and � = 100. The intuition is that if the valuation rate is higher,
$1 million at retirement would fund higher annual consumption. For this higher
annual consumption during retirement to match my annual consumption during my
working years, I must spend more in my working years, which requires my salary to
grow more.





Chapter 4
Solutions

4.1 Original Question
Assume that the real projected growth rate of wages is 6 = 1.0% and that real
valuation (or interest) rate is E = 2.5%. What fraction of the entire group do not
have enough financial capital to maintain their standard of living? Please use the
functions and metrics I designed previously to support your answer.
Answer
To solve this problem, I loop though all the rows in SIMPBS. I check if they are still
working (i.e. they are younger than their specific retirement age). If they are still
working, I check if their spending exceeds their smooth consumption rate SMCR. If
they retired, I check if the present value of their future consumption exceeds their
financial capital. If either of these conditions are true, then I add them to the count
of overspending (which I set to 0 before the loop). I then divide the number of
overspenders by the length of SIMBPS (my total population), to get the fraction of
people that do not have the capital to maintain their standard of living. I assumed
everyone will live until age 95, because that is the oldest age in the dataset.

#renaming columns for easier use
#renaming columns for easier use
SP<-SIMPBS$SPENDING
WG<-SIMPBS$CRNTWG
AG<-SIMPBS$AGEFAM
RG<-SIMPBS$RETAGE
FC<-SIMPBS$FINCAP
# placeholder to count overspenders
overspending<-0
#loop through all people
for(i in 1:length(FC)){
#check if they are still working
if (AG[i]<RG[i]){
#check if spending exceeds smooth consumption rate
if(SMCR(AG[i],FC[i],WG[i],0.01,0.025,RG[i],95)<SP[i])

19
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#increase the count by 1
{overspending<-overspending+1}}

#if they retired
else{
#check if PV of future spending exceeds financial capital
if(FC[i]<SP[i]*RGOA(0,0.025,95-AG[i]))
#increase the count by 1
{overspending<-overspending+1}}}

Now I divide the number of over-spenders by the number of people in the set. Here
are the results:

> overspending/length(FC)
[1] 0.8848

Meaning 88% of families do not have enough financial capital to maintain their
standard of living under my assumptions. Note that because I am assuming the
same life expectancy for my entire population, and there are 77 people that are alive
at age 95, I can not assume an age of death below 95. However, I still want to work
with a value of D below 95 so I will choose to assume that those who survived past
the expected age of death D have enough capital to maintain their spending. This
means when I loop through the population to check for overspenders, I do not need
to check the people who are older than D. I check what happens if I lower the
assumed age of death to the Canadian (2019) life expectancy of 82 years:

#placeholder to count overspenders
overspending<-0
#loop through all people
for(i in 1:length(FC)){
#check if they are under 82
if (AG[i]<82){
#check if they are working
if (AG[i]<RG[i]){
#check if they are overspending and count if yes
if(SMCR(AG[i],FC[i],WG[i],0.01,0.025,RG[i],82)<SP[i])

{overspending<-overspending+1}}
#if they are not working (they retired)
else{
#count those whose future consumption exceeds capital
if (FC[i]<SP[i]*RGOA(0,0.025,82-AG[i])) {
overspending<-overspending+1}}}}

> overspending/length(FC)
[1] 0.1736
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At this lower life expectancy only 17% of the population do not have enough to
maintain their standard of living. This result is more comforting than the 88% that
were underfunded when I assumed death at age 95. This is consistent with the
intuition that higher life expectancy requires greater capital for retirement. Note,
that I assumed everyone older than 82 had enough money, and this assumption is
probably false in reality.

4.2 Original Question
What fraction of the working population (sample) will not have enough to maintain
their standard of living? Segment by age buckets.
Answer
To solve this problem, I create a function called Frac_bucket which returns the
fraction of an age bucket that will not have enough to maintain their standard of
living. The function takes in a lower bucket age limit G1, and an upper bucket age
limit G2, along with an age of death �. I do not need to worry about people that are
older than the death age �, because I can set the upper bucket limit G2 to be less
than �.

#function takes bucket of working people between age x1 and x2
#returns fraction that can not maintain standard of living
#assuming they die at age D
Frac_bucket<-function(x1,x2,D){
#isolate members of the bucket
SP_b<-SP[AG<=x2 & AG>x1 & AG<RG]
WG_b<-WG[AG<=x2 & AG>x1 & AG<RG]
AG_b<-AG[AG<=x2 & AG>x1 & AG<RG]
RG_b<-RG[AG<=x2 & AG>x1 & AG<RG]
FC_b<-FC[AG<=x2 & AG>x1 & AG<RG]
#reset counter to 0
overspending<-0
#loop through bucket members
for (i in 1:length(FC_b)){
#if they spend more than SMCR add them to the count
if (SMCR(AG_b[i],FC_b[i],WG_b[i],0.01,0.025,RG_b[i],D)
<SP_b[i]){overspending<-overspending+1}}

#divide number of overspenders by bucket population size
return(overspending/length(SP_b))}

I run this function on decade long buckets from age 20 to 70.

> Frac_bucket(20,30,85)
[1] 1
> Frac_bucket(30,40,85)
[1] 0.8890357
> Frac_bucket(40,50,85)
[1] 0.6900585
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> Frac_bucket(50,60,85)
[1] 0.2543103
> Frac_bucket(60,70,85)
[1] 0.01362398

It looks like younger people are more likely to spend beyond their means. Maybe as
people get older they begin thinking about retirement more seriously, and realize
they must save more and spend less. Note that I assumed a life horizon of 85. Had I
chosen � = 95 these fractions would be much higher. I now do that same
calculation using � = 95 below, and see that the fraction of working people that
can not maintain their standard of living is indeed much higher, and the variation
between the age buckets is much smaller.

> Frac_bucket(20,30,95)
[1] 1
> Frac_bucket(30,40,95)
[1] 0.989432
> Frac_bucket(40,50,95)
[1] 0.9859649
> Frac_bucket(50,60,95)
[1] 0.987069
> Frac_bucket(60,70,95)
[1] 0.972752

Its interesting that for this higher life expectancy, the 40-50 bucket is doing better
than the 50-60 bucket, contrary to what I saw when � = 85. The explanation for
this can be that when I assume survival until 95, only a hand-full of people are
actually able to maintain their standard of living. Because the numbers are so small
they may not be reflective of the general population. I modify the Frac_bucket
function and create another function called Frac_bucket2 which returns the size
of each bucket along with the number of people that are not over spending.

#function takes bucket of working people between age x1 and x2
#returns bucket size and number of non-overspenders
Frac_bucket2<-function(x1,x2,D){
#isolate members of the bucket
SP_b<-SP[AG<=x2 & AG>x1 & AG<RG]
WG_b<-WG[AG<=x2 & AG>x1 & AG<RG]
AG_b<-AG[AG<=x2 & AG>x1 & AG<RG]
RG_b<-RG[AG<=x2 & AG>x1 & AG<RG]
FC_b<-FC[AG<=x2 & AG>x1 & AG<RG]
#reset counter to 0
overspending<-0
#loop through bucket members
for (i in 1:length(FC_b)){
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#check if they spend more than SMCR
if (SMCR(AG_b[i],FC_b[i],WG_b[i],0.01,0.025,RG_b[i],D)
<SP_b[i])
#add overspenders to the count
{overspending<-overspending+1}}

#return bucket size and number of non-overspenders
return(c(length(SP_b),length(SP_b)-overspending))}

I run this function on my buckets, first assuming death at 85 and then at 95.

> Frac_bucket2(20,30,85)
[1] 4 0
> Frac_bucket2(30,40,85)
[1] 757 84
> Frac_bucket2(40,50,85)
[1] 855 265
> Frac_bucket2(50,60,85)
[1] 696 519
> Frac_bucket2(60,70,85)
[1] 367 362

> Frac_bucket2(20,30,95)
[1] 4 0
> Frac_bucket2(30,40,95)
[1] 757 8
> Frac_bucket2(40,50,95)
[1] 855 12
> Frac_bucket2(50,60,95)
[1] 696 9
> Frac_bucket2(60,70,95)
[1] 367 10

I see that when � = 95 there are at most 12 people in a bucket that can actually
maintain their spending until age 95. This number is not statistically significant. I
would require a bigger population to get a better understanding of the actual
probability distribution of a person overspending, given their age bucket, assuming
� = 95.

4.3 Original Question
What fraction of the population have 20% less than what they need to maintain
their standard of living? (Call this financial distress.)
Answer
To solve this problem, I make some modifications to the code in the solution from
question 4.1. Taking into account the entire population, but checking to see if the
financial capital is less than 80% of what it should be. The financial capital should
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equal the present value of future consumption minus human capital. Here is the
code in R:

#placeholder to count financially distressed people
distressed<-0
#loop through all people
for(i in 1:length(FC)){
#present value of their future consumption
FCR<-SP[i]*RGOA(0,0.025,95-AG[i])
#check if they are still working
if (AG[i]<RG[i]){
#human capital is PV of future wages
HC<-WG[i]*RGOA(0.01,0.025,RG[i]-AG[i])}

#if they are not working set human capital to 0
else{HC<-0}
#check if financial capital is below 80% of needed
if (FC[i]<0.8*(FCR-HC)){
#count as distressed if true
distressed<-distressed+1}}

The percent of people in financial distress is 51.4% which can be seen in the box
below:

> distressed/length(FC)
[1] 0.514

Even though I saw in question 4.1 that 88% of people are overspending, only about
half the population is more that 20% away from where they should be, assuming
� = 95.

4.4 Original Question
Assume a 6 = 2% growth rate and E = 4% valuation (interest) rate. Does the
situation improve? Please describe.
Answer
When the growth and valuation rate change to 6 = 2% and E = 4%, the situation
drastically improves. Now the percentage of the population that are in financial
distress drops from 51% to 7% which can be seen in the script and output below.

#placeholder to count distressed
distressed<-0
#loop through all people
for(i in 1:length(FC)){
#present value of their future consumption
FCR<-SP[i]*RGOA(0,0.04,95-AG[i])
#check if they are still working
if (AG[i]<RG[i]){
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#human capital is PV of future wages
HC<-WG[i]*RGOA(0.02,0.04,RG[i]-AG[i])}

#if they are not working human capital is 0
else{HC<-0}
#check if financial capital is below 80% of needed
if (FC[i]<0.8*(FCR-HC)){
#count as distressed if true
distressed<-distressed+1}}

#divide distressed cases by all cases
> distressed/length(FC)
[1] 0.07

The fraction of the population that is in financial distress drops down by 44
percentage points from question 4.3 which used a growth rate of 6 = 1.0% and a
real valuation rate of E = 2.5%. I see that assuming a higher valuation rate and
wage growth, improves the situation and reduces the need for savings earlier in life,
because financial capital is expected to grow more quickly, and human capital is
higher due to the higher growth rate of wages.

4.5 Original Question
For the age groups between G = 30 and G = 40 that was analyzed in the last section,
can you locate a set of 6 and E parameters in the financial life-cycle model that will
actually fit the observed 62.6% salary multiple that families had accumulated on
average?
Answer
To solve this problem, I write an R script which loops through growth rates and
valuation rates and evaluates the mean wage multiple they must have saved. I store
the pairs of g and v that result in an average wage multiple that is between 61.6%
and 63.6%.

#isolate people between ages 30 and 40
SP<-SIMPBS$SPENDING[SIMPBS$AGEFAM<=40 & SIMPBS$AGEFAM>=30]
WG<-SIMPBS$CRNTWG[SIMPBS$AGEFAM<=40 & SIMPBS$AGEFAM>=30]
AG<-SIMPBS$AGEFAM[SIMPBS$AGEFAM<=40 & SIMPBS$AGEFAM>=30]
RG<-SIMPBS$RETAGE[SIMPBS$AGEFAM<=40 & SIMPBS$AGEFAM>=30]
FC<-SIMPBS$FINCAP[SIMPBS$AGEFAM<=40 & SIMPBS$AGEFAM>=30]

#create lists to store g and v values
G<-list()
V<-list()

#loop through g values up to 10%
for (g in 1:100*.001){
#loop through v values up to 10%
for (v in 1:100*.001){



26 4 Solutions

#check that v does not equal g
if (g!=v){
#evaluate the population mean wage multiple
m<-mean((SP/WG)*RGOA(0,v,95-AG)-RGOA(g,v,RG-AG))
#check if wage multiple is within 1% of 62.6%
if (m>.616 & m<.636){
#if it is record the values of g and v
G <- append(G,g)
V <- append(V,v)}}}}

#put the g and v value into a matrix
q<-as.matrix(cbind(G,V))

Here is the output.

> q
G V

[1,] 0.001 0.068
[2,] 0.003 0.063
[3,] 0.005 0.058
[4,] 0.007 0.053
[5,] 0.01 0.046
[6,] 0.015 0.035
[7,] 0.016 0.033
[8,] 0.021 0.023

I see that for low growth rates like 0.1%, I require high valuation rates like 6.8%,
but for higher growth rates, like 2.1%, a lower valuation rate of 2.3% will suffice to
warrant a 62.6% salary multiple in financial capital.



Chapter 5
Solutions

5.1 Original Question
Create a modified version of the main script (recipe) that generates monthly
trajectories, assumes monthly consumption withdrawals of 2/12, and (obviously)
generates monthly investment returns. Call this function the PLSM.12 to remind you
that everything has been converted to monthly values. Now, assume
a = 3.5%, f = 20%, which remember are annual values, and compute portfolio
longevity for 2 = 4, 5, 6, 7 using a total of # = 10, 000 simulation runs. Compare
the median portfolio longevity to the annual values (which appear in the chapter).
Finally, compute the probability (or more accurately the frequency for which)
portfolio longevity will be less than 30 years, that is 360 months, for each of these
four withdrawal rates. This is the (infamous) 30-year failure rate. Compare with the
results in the chapter and discuss the impact of withdrawal frequency on these
probabilities.
Answer
To create a function which generates monthly portfolio trajectories, I modify the
original R script from the chapter as follows. When c or nu (a) appear in the
function I divide them by 12 and I divide sigma by sqrt(12). Also, instead of
storing 100 columns of data representing 100 years, I store 1200 columns
representing 1200 months. Finally I divide the end result PLV by 12, so that my
values are in years.

PLSM.12<-function(F,c,nu,sigma,N){
path<-matrix(nrow=N,ncol=1200)
PLV<-c()
for (i in 1:N){
return<-exp(rnorm(1200,nu/12,sigma/sqrt(12)))
path[i,1]<-F
for (j in 2:1200){
path[i,j]<-path[i,j-1]*return[j]-(c/12)
if (path[i,j]<=0) {break}}

27
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PLV[i]=j/12}
PLV}

Now that I have my PLSM.12 function, I use it to compute median portfolio
longevity for consumption values of c ranging from 4 to 7:

> L4.12<-PLSM.12(100,4,0.035,0.2,10000)
> L5.12<-PLSM.12(100,5,0.035,0.2,10000)
> L6.12<-PLSM.12(100,6,0.035,0.2,10000)
> L7.12<-PLSM.12(100,7,0.035,0.2,10000)
> median(L4.12)
[1] 47.25
> median(L5.12)
[1] 31
> median(L6.12)
[1] 23.58333
> median(L7.12)
[1] 18.91667

In the chapter, when withdrawals were annual, the median portfolio longevity
values were 50, 34, 25, 20. In contrast, when withdrawals were monthly, I got 47,
31, 24, 19. It appears that for all consumption rates, increasing the withdrawal
frequency from annual to monthly reduces the portfolio longevity. This makes
sense intuitively, because the models assume consumption happens at the end of
each period, so the annual withdrawals model would mark the time of ruin at the
end of the year, while the monthly model would mark the time of ruin earlier at the
end of the month. I now look at the probability of the portfolio lasting 30 years.

> length(L4.12[L4.12<30])/length(L4.12)
[1] 0.3351
> length(L5.12[L5.12<30])/length(L5.12)
[1] 0.4838
> length(L6.12[L6.12<30])/length(L6.12)
[1] 0.6148
> length(L7.12[L7.12<30])/length(L7.12)
[1] 0.7283

In the chapter, the 30-year failure rates were 32%, 46%, 60%, 71% for annual
withdrawals of 2 = 4, 5, 6, 7. For monthly withdrawals I got 34%, 48%, 61%, 73%.
I see that monthly withdrawals result in higher failure rate than annual withdrawals.
This makes sense because if ruin were to happen during the first 11 months of year
30, the annual model would treat is as a 30-year success, while the monthly model
would treat it as 30-year failure. I conclude that portfolio longevity is higher, and
30-year failure is less likely, if withdrawals are made annually as opposed to
monthly.
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5.2 Original Question
Using your monthly PLSM.12 simulation script, assume a starting portfolio value
of � = $100, and an annual consumption withdrawal rate of 2 = 4. Now, for the
(annual) portfolio return values, assume (� [Ẽ] = 15%, but for the expected return
� [Ẽ] assume a range of values (i.e. run five different simulations) ranging from
a = 1%, 2%, 3%, 4%, 5%. Then, compute the 30-year failure rates under these five
expected return assumptions and locate the value of � [Ẽ] for which the 30-year
failure rate is closest to 90%.
Answer
I simulate 5 scenarios based off the range of values for the expected return
� [Ẽ] = 1%, 2%, 3%, 4%, 5%.

> Lm1<-PLSM.12(100,4,0.01,0.15,10000)
> Lm2<-PLSM.12(100,4,0.02,0.15,10000)
> Lm3<-PLSM.12(100,4,0.03,0.15,10000)
> Lm4<-PLSM.12(100,4,0.04,0.15,10000)
> Lm5<-PLSM.12(100,4,0.05,0.15,10000)
> length(Lm1[Lm1<30])/length(Lm1)
[1] 0.5619
> length(Lm2[Lm2<30])/length(Lm2)
[1] 0.4414
> length(Lm3[Lm3<30])/length(Lm3)
[1] 0.316
> length(Lm4[Lm4<30])/length(Lm4)
[1] 0.2173
> length(Lm5[Lm5<30])/length(Lm5)
[1] 0.1414

The higher the value of � [Ẽ], the lower the frequency of the portfolio longevity
being less than 30 years. The 30-year failure rate is closest to 90% when
� [Ẽ] = 1%. It also makes sense intuitively that the highest failure rate will be at the
worst expected market performance. For curiosity, I check the 30-year failure rate
when � [Ẽ] = 0%,−1%.

> Lm0<-PLSM.12(100,4,0,0.15,10000)
> length(Lm0[Lm0<30])/length(Lm0)
[1] 0.6737
> Lm0n<-PLSM.12(100,4,-0.01,0.15,10000)
> length(Lm0n[Lm0n<30])/length(Lm0n)
[1] 0.7761

I see that if 2 = 4% even if the market expected return is 0 or -1, the 30-year failure
rate is still below 90%. Using trial-and-error I found that for � [Ẽ] = −2.6% (and
(� [Ẽ] = 15%) the 30-year failure rate is indeed around 90%. This can be seen in
the code below:
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> Lm0n<-PLSM.12(100,4,-0.026,0.15,10000)
> length(Lm0n[Lm0n<30])/length(Lm0n)
[1] 0.8991

This means that I must expect the market to decline more than 2.6% per year, for
there to be a 10% probability that the portfolio will outlast 30 years.

5.3 Original Question
Modify your basic (monthly) simulation PLSM.12 so that if-and-when the portfolio
value declines by more than three standard deviations in any given month, the
consumption withdrawal rate is reduced from 2/12 to (0.75) × 2/12. In words, if
the stock market does (very) badly in a particular month, you spend less in that
particular month. Note that you will have to implement this with a separate (IF,
ELSE) branch within the simulation. Now, using the f = (� [Ẽ] = 15%, and the
relevant a = � [Ẽ] value from the above problem, please compute the 30-year
failure rate in this case. It should be lower. But by how much?
Answer
To answer this question I create a new (IF, ELSE) branch in PLSM.12 which
checks whether or not the portfolio value declines by more than three standard
deviations in any given month. If it does, then I lower consumption for that month
to (0.75) × 2/12. Here is the R script.

PLSM2.12<-function(F,c,nu,sigma,N){
path<-matrix(nrow=N,ncol=1200)
PLV<-c()
for (i in 1:N){
return<-exp(rnorm(1200,nu/12,sigma/sqrt(12)))
path[i,1]<-F
for (j in 2:1200){
#check if decline exceeds three standard deviations
if (return[j]-return[j-1]<(-3)*sigma/sqrt(12)){
#assume lower consumption if it does
path[i,j]<-path[i,j-1]*return[j]-(0.75*c/12)}
#otherwise assume normal consumption

else{path[i,j]<-path[i,j-1]*return[j]-(c/12)}
if (path[i,j]<=0) {break}}

PLV[i]=j/12}
PLV}

I run this new function using f = (� [Ẽ] = 15%, and the � [Ẽ] values from the
previous question a = 1%, 2%, 3%, 4%, 5%.

> Lm1<-PLSM2.12(100,4,0.01,0.15,10000)
> Lm2<-PLSM2.12(100,4,0.02,0.15,10000)
> Lm3<-PLSM2.12(100,4,0.03,0.15,10000)
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> Lm4<-PLSM2.12(100,4,0.04,0.15,10000)
> Lm5<-PLSM2.12(100,4,0.05,0.15,10000)
> length(Lm1[Lm1<30])/length(Lm1)
[1] 0.5453
> length(Lm2[Lm2<30])/length(Lm2)
[1] 0.4284
> length(Lm3[Lm3<30])/length(Lm3)
[1] 0.313
> length(Lm4[Lm4<30])/length(Lm4)
[1] 0.2173
> length(Lm5[Lm5<30])/length(Lm5)
[1] 0.1399

The 30-year failure rates I got are 54.53%, 42.84%, 31.3%, 21.73%, 13.99%. In the
previous question, when consumption is not reduced in response to poor returns,
30-year failure rates were 56.19%, 44.14%, 31.6%, 21.73%, 14.14% which are
higher. I see only a small decline in the 30-year failure rate compared with the last
question, where the consumption withdrawal was never reduced. This is because a
market decline of 3 standard deviations is very rare, so the overall consumption is
almost identical between the two questions. Also, notice that for higher values of
� [Ẽ] the two functions result in increasingly similar output, because a huge market
drop is less likely for higher � [Ẽ]. It could also be that consumption plays a much
smaller role in financial ruin when compared with the role of investment returns. If
I modify my function to reduce consumption in response to a decline of one
standard deviation (instead of three), then I will see much lower 30-year failure
rates. I show this by creating another function PLSM3.12 which does exactly that.

PLSM3.12<-function(F,c,nu,sigma,N){
path<-matrix(nrow=N,ncol=1200)
PLV<-c()
for (i in 1:N){
return<-exp(rnorm(1200,nu/12,sigma/sqrt(12)))
path[i,1]<-F
for (j in 2:1200){
#check if decline is more than one standard deviation
if (return[j]-return[j-1]<(-1)*sigma/sqrt(12)){
#assume lower consumption if it is
path[i,j]<-path[i,j-1]*return[j]-(0.75*c/12)}

else{path[i,j]<-path[i,j-1]*return[j]-(c/12)}
if (path[i,j]<=0) {break} }

PLV[i]=j/12}
PLV}

Here are the results.
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> Lm1<-PLSM3.12(100,4,0.01,0.15,10000)
> Lm2<-PLSM3.12(100,4,0.02,0.15,10000)
> Lm3<-PLSM3.12(100,4,0.03,0.15,10000)
> Lm4<-PLSM3.12(100,4,0.04,0.15,10000)
> Lm5<-PLSM3.12(100,4,0.05,0.15,10000)

> length(Lm1[Lm1<30])/length(Lm1)
[1] 0.5027
> length(Lm2[Lm2<30])/length(Lm2)
[1] 0.3821
> length(Lm3[Lm3<30])/length(Lm3)
[1] 0.268
> length(Lm4[Lm4<30])/length(Lm4)
[1] 0.1774
> length(Lm5[Lm5<30])/length(Lm5)
[1] 0.1107

Notice that my 30-year-failure rates are noticeably lower when using PLSM3.12
than when using PLSM2.12. This is because I am lowering my consumption much
more frequently in PLSM3.12, since declines of one standard deviation are far more
prevalent than declines of three standard deviations.

5.4 Original Question
Simulate a vector of 100 historical (continuously compounded) inflation-adjusted
investment returns, assuming they are normally distributed with a mean value of
a = 3% and a standard deviation f = 15%. Export those numbers from R into a csv
file using the write.csv command. (Google the exact syntax.) Then, import this
dataset into R, and use those numbers with the sample command to bootstrap a
Monte Carlo simulation for portfolio longevity.
Answer
I used the following R script to simulate a vector of 100 historical investment
returns, and then bootstraped a Monte Carlo simulation for portfolio longevity. The
bootstrap generates 10,000 possible portfolio trajectories by randomly selecting
annual returns from the vector of 100 historical returns.

#simulating returns and writing to csv
write.csv(rnorm(100,0.03,0.15), file = "sample.csv")
#importing data from csv
sample <- read.csv("sample.csv")
PLSM.sample<-function(F,c,N){
path<-matrix(nrow=N,ncol=100)
PLV<-c()
for (i in 1:N){
#sampling from the imported data
return<-exp(sample(sample[,"x"], size=100))
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path[i,1]<-F
for (j in 2:100){
path[i,j]<-path[i,j-1]*return[j]-c
if (path[i,j]<=0) {break}}

PLV[i]=j}
PLV}

The results I obtained using the various c values can be seen below:

> median(PLSM.sample(100,4,10000))
[1] 37
> median(PLSM.sample(100,5,10000))
[1] 27
> median(PLSM.sample(100,6,10000))
[1] 22
> median(PLSM.sample(100,7,10000))
[1] 19

I ran this simulation multiple times. The results were highly inconsistent between
simulations. This can be explained by the relatively small sample of only 100
values that I am using in the bootstrap. Yes, my PLSM.sample function is
producing 10,000 trajectories, but the returns that create those trajectories come
from a csv of only 100 random values. I altered the script to simulate, export to csv,
and import 10,000 random historical returns, and I used them in a Monte Carlo
simulation. My results were much more consistent when I repeated this experiment
multiple times using using a bigger sample in the csv.

5.5 Original Question
Instead of the normal distribution with mean a and standard deviation f, generate
portfolio longevity results, and in particular compute the 30-year failure rate
assuming a uniformly distributed (continuously compounded) return Ẽ, using the
runif(.) command. Google the exact syntax, but assume monthly returns range
from min[Ẽ] = −2% to max[Ẽ] = 2%. Discuss and explain the results.
Answer
To solve this problem, I modified the code I used for normally distributed Ẽ by
changing return<-exp(rnorm(100,nu,sigma)) to
return<-exp(runif(100,min,max)):

#function simulates portfolio longevity
#returns distribution is assumed to be uniform(min,max)
PLSM.U<-function(F,c,N,min,max){
path<-matrix(nrow=N,ncol=100)
PLV<-c()
for (i in 1:N){
return<-exp(runif(100,min,max))
path[i,1]<-F
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for (j in 2:100){
path[i,j]<-path[i,j-1]*return[j]-c
if (path[i,j]<=0) {break}}

PLV[i]=j}
PLV}

Using values of c ranging from 4 to 7, I consistently get a 30-year-failure rate of
around 100%. This makes sense because my average annual return is 0, so even
with the lowest consumption of 4, my portfolio is not expected to last more than 25
years. The results can be seen below.

> U4<-PLSM.U(100,4,10000,-.02,.02)
> U5<-PLSM.U(100,5,10000,-.02,.02)
> U6<-PLSM.U(100,6,10000,-.02,.02)
> U7<-PLSM.U(100,7,10000,-.02,.02)
>
> length(U4[U4<30])/length(U4)
[1] 0.9992
> length(U5[U5<30])/length(U5)
[1] 1
> length(U6[U6<30])/length(U6)
[1] 1
> length(U7[U7<30])/length(U7)
[1] 1

If I increase the market volatility by allowing returns to be uniform between
min[Ẽ] = −10% to max[Ẽ] = 10%, I find that many portfolios will survive past the
30 year mark and my 30-year failure rates decline.

> U4<-PLSM.U(100,4,10000,-.1,.1)
> U5<-PLSM.U(100,5,10000,-.1,.1)
> U6<-PLSM.U(100,6,10000,-.1,.1)
> U7<-PLSM.U(100,7,10000,-.1,.1)
>
> length(U4[U4<30])/length(U4)
[1] 0.732
> length(U5[U5<30])/length(U5)
[1] 0.9736
> length(U6[U6<30])/length(U6)
[1] 0.9988
> length(U7[U7<30])/length(U7)
[1] 1



Chapter 6
Solutions

6.1 Original Question
Assuming the same consumption withdrawal of 2 = 5 per � = 100, as well as
a = 2.5% and f = 15% investment values, generate # = 500 instead of the (much
larger) # = 50000 paths. Run the same lm(.) and glm(.) regressions and discuss
the statistical significance of your results. Is 500 enough data points for a Monte
Carlo simulation of retirement income?
Answer
Using the code from the chapter and our PLSM.SR function, I simulate a sample
with N=500 instead of N=50000. I then run lm(.) to create a linear regression
model and summarize it.

sample<-PLSM.SR(100,5,0.025,0.15,500)
DR1<-sample[,1]
DR2<-sample[,2]
DR3<-sample[,3]
PoLo<-sample[,4]
fit<-lm(PoLo~DR1+DR2+DR3)
summary(fit)

The following results were obtained:

Call:
lm(formula = PoLo ~ DR1 + DR2 + DR3)

Residuals:
Min 1Q Median 3Q Max

-30.541 -9.673 -2.561 6.105 53.039

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 19.5691 0.9351 20.927 <2e-16 ***
DR1 356.2417 14.0681 25.323 <2e-16 ***

35
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DR2 233.8209 14.1557 16.518 <2e-16 ***
DR3 123.0652 13.5190 9.103 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘
’ 1

Residual standard error: 14.95 on 496 degrees of freedom
Multiple R-squared: 0.6602, Adjusted R-squared:
0.6581
F-statistic: 321.2 on 3 and 496 DF, p-value: < 2.2e-16

The three stars show that each of the coefficients are highly statistically significant
(p<0.001). We saw the same thing in the chapter. The '2 value, a measure of the
regression model’s fitness, is 66%, which is again the same value we got with
N=50000 in the chapter.
Now I generate the logistic regression model i.e. the glm(.) function.

PoLo[PoLo<30]<-0
PoLo[PoLo>=30]<-1
fit<-glm(PoLo~DR1+DR2+DR3, family = "binomial")
summary(fit)

The results are:

Call:
glm(formula = PoLo ~ DR1 + DR2 + DR3, family = "binomial")

Deviance Residuals:
Min 1Q Median 3Q Max

-2.24139 -0.30456 -0.01011 0.34943 2.16503

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.8047 0.4081 -9.324 < 2e-16 ***
DR1 76.5500 7.6132 10.055 < 2e-16 ***
DR2 51.8129 5.7355 9.034 < 2e-16 ***
DR3 12.4913 3.3653 3.712 0.000206 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘
’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 692.95 on 499 degrees of freedom
Residual deviance: 281.81 on 496 degrees of freedom
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AIC: 289.81

Number of Fisher Scoring iterations: 7

Here again, all three of the coefficients are statistically significant. I conclude that
for this type of analysis, there is no large difference between N=500 paths and
N=50000 paths, 500 data points is indeed good enough.

6.2 Original Question
Modify the basic PLSM.SR simulation so that you keep track of five 7 (instead of
10) year ARIG values, which represents investment returns during the first 35 years
of consumption withdrawals. Using the same 2 = 5 per � = 100, and a = 2.5%,
f = 15% values, run a logistic regression (only), where success is defined as
surviving for 35 years. Please report and interpret the coefficients in this regression.
Answer
I generated a modified R script, which now keeps track of every 7 years. The only
difference between the new script and the script from the chapter are the lines in
which the a% values are stored. Now every 7 values get stored in a separate column
in the PLM matrix. I had to extend the PLM matrix to have 6 columns, 5 for each
7-year-period, and 1 for the portfolio longevity. First, I define my new function
PLSM.SR7.

PLSM.SR7<-function(F,c,nu,sigma,N){
path<-matrix(nrow=N,ncol=100)
PLM<-matrix(nrow=N,ncol=6)
for (i in 1:N){
return<-exp(rnorm(100,nu,sigma))
PLM[i,1]<-prod(return[1:7])^(1/7)-1
PLM[i,2]<-prod(return[8:14])^(1/7)-1
PLM[i,3]<-prod(return[15:21])^(1/7)-1
PLM[i,4]<-prod(return[22:28])^(1/7)-1
PLM[i,5]<-prod(return[29:35])^(1/7)-1
path[i,1]<-F
for (j in 2:100){
path[i,j]<-path[i,j-1]*return[j]-c
if (path[i,j]<=0) {break}}

PLM[i,6]=j}
PLM}

Then I use the function and run a logistic regression on the output.

sample<-PLSM.SR7(100,5,0.025,0.15,50000)
DR1<-sample[,1]
DR2<-sample[,2]
DR3<-sample[,3]
DR4<-sample[,4]
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DR5<-sample[,5]
PoLo<-sample[,6]
PoLo[PoLo<35]<-0
PoLo[PoLo>=35]<-1
fit<-glm(PoLo~DR1+DR2+DR3+DR4+DR5, family = "binomial")
summary(fit)

Here are the results:

Call:
glm(formula = PoLo ~ DR1 + DR2 + DR3 + DR4 + DR5,
family = "binomial")

Deviance Residuals:
Min 1Q Median 3Q Max

-3.6161 -0.2492 -0.0281 0.1557 3.2987

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.3754 0.0663 -96.16 <2e-16 ***
DR1 64.3099 0.6907 93.11 <2e-16 ***
DR2 52.5995 0.5894 89.25 <2e-16 ***
DR3 33.1886 0.4390 75.60 <2e-16 ***
DR4 17.8389 0.3416 52.23 <2e-16 ***
DR5 5.2306 0.3005 17.41 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 66159 on 49999 degrees of freedom
Residual deviance: 21611 on 49994 degrees of freedom
AIC: 21623

Number of Fisher Scoring iterations: 7

We see all 5 coefficients are statistically significant. Notice that the first 7 years
contributes 12 times more to the probability of achieving a 35 year longevity,
compared to the last 7 years.

6.3 Original Question
All else being equal (that is assuming the same values of 2/�, a, what happens to
the coefficients in the logistic regression when you increase the volatility f from
15% to 30%. What is the interpretation of the coefficients? Explain intuitively.
Answer
I repeat the same simulation from last question but using f = 30%.
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sample<-PLSM.SR7(100,5,0.025,0.30,50000)
DR1<-sample[,1]
DR2<-sample[,2]
DR3<-sample[,3]
DR4<-sample[,4]
DR5<-sample[,5]
PoLo<-sample[,6]
PoLo[PoLo<35]<-0
PoLo[PoLo>=35]<-1
fit<-glm(PoLo~DR1+DR2+DR3+DR4+DR5, family = "binomial")
summary(fit)

Here is the output>

Call:
glm(formula = PoLo ~ DR1 + DR2 + DR3 + DR4 + DR5,
family = "binomial")

Deviance Residuals:
Min 1Q Median 3Q Max

-3.6316 -0.2867 -0.0383 0.1975 3.3651

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.78502 0.03973 -95.27 <2e-16 ***
DR1 29.65069 0.31111 95.31 <2e-16 ***
DR2 23.72245 0.26172 90.64 <2e-16 ***
DR3 14.78597 0.19625 75.34 <2e-16 ***
DR4 8.07079 0.15957 50.58 <2e-16 ***
DR5 2.46596 0.14312 17.23 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 66907 on 49999 degrees of freedom
Residual deviance: 23576 on 49994 degrees of freedom
AIC: 23588

Number of Fisher Scoring iterations: 7

When the volatility is increased from 15% to 30%, the coefficients in the regression
decrease to approximately half of their previous values. This is because the higher
volatility/uncertainty in the investment return makes its way into the wealth path
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during retirement causing more overall uncertainty in any particular period. Here is
a table comparing the coefficients when f is 15% to when f is 30%. Notice that
the ratio between the coefficients does not change much when we change the
market volatility (they all decline proportionally).

Coefficients in the Regression
Variable f=15% f=30%
DR1 64.31 29.65
DR2 52.60 23.72
DR3 33.19 14.79
DR4 17.84 8.07
DR5 5.23 2.47

6.4 Original Question
Per the discussion in section 6.9, please modify the basic PLSM.SR simulation so
that year-by-year investment returns are normally distributed but truncated and
upper and lower bounds. In other words, if the random continuously compounded
return exceeds 1.5f, either above or below the mean a, it is capped. And, while this
isn’t quite the option-based collar described in section 6.9, it’s close enough. Please
compute the portfolio 30-year success rate using the usual parameters (from the
prior questions) and compare with the uncapped (a.k.a. un-collared) portfolio.
Answer
I modified the PLSM.SR function to create a new function PLSM.SR.cap which
truncates return values that exceed 1.5f, either above or below the mean a. I used
an (IF, ELSE) statement to check each return value, and modify when needed.

PLSM.SR.cap<-function(F,c,nu,sigma,N){
path<-matrix(nrow=N,ncol=100)
PLM<-matrix(nrow=N,ncol=4)
for (i in 1:N){
v<-rnorm(100,nu,sigma)
for (q in 1:100){
#check if return exceeds nu by 1.5*sigma
if (v[q]>nu+1.5*sigma){
#set return to nu+1.5*sigma
v[q]<-nu+1.5*sigma}

#check if return is below nu-1.5*sigma
else if(v[q]<nu-1.5*sigma){
#set return to nu-1.5*sigma
v[q]<-nu-1.5*sigma}}

return<-exp(v)
PLM[i,1]<-prod(return[1:10])^(1/10)-1
PLM[i,2]<-prod(return[11:20])^(1/10)-1
PLM[i,3]<-prod(return[21:30])^(1/10)-1
path[i,1]<-F
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for (j in 2:100){
path[i,j]<-path[i,j-1]*return[j]-c
if (path[i,j]<=0) {break}}

PLM[i,4]=j}
PLM}

I ran the PLSM.SR.cap and the PLSM.SR, and computed both their 30 year success
rates.

> sample.cap<-PLSM.SR.cap(100,5,0.025,0.15,50000)
> sample<-PLSM.SR(100,5,0.025,0.15,50000)
> PoLo.cap<-sample.cap[,4]
> PoLo<-sample[,4]
>
> #Capped 30 year success
> length(PoLo.cap[PoLo.cap>30])/length(PoLo.cap)
[1] 0.45648
>
> #Uncapped 30 year success
> length(PoLo[PoLo>30])/length(PoLo)
[1] 0.45164

We see that the cap slightly improves the 30-year success rate. The difference is
small, only around 0.5% which seems almost negligible.

6.5 Original Question Create a modified PLSM.SR simulation in which inflation is
uniformly distributed between [−1%, 3%] in any given year, investment returns are
normally distributed with a nominal a=, f, and consumption withdrawals 2 = 4%
are adjusted every year by realized inflation. Run a simulation with
a= = 5%, f = 15% and estimate coefficients using the lm(.) command in R.
Answer
I create a simulation called PLSM.SR.inf by modifying PLSM.SR as follows: For
each of the N trajectories, I create an inflation vector with 100 uniformly
distributed values (representing 100 years). I create another variable c1 which
changes every year and denotes inflation adjusted consumption of that year. For
each of the N trajectories I initially set c1=c. Every year I redefine c1 by
multiplying last year’s c1 by exp(inflation[i]) which is the inflation factor for
that year. I then subtract c1 instead of c to reduce the portfolio’s value by the
inflation adjusted consumption.

PLSM.SR.inf<-function(F,c,nu,sigma,N){
path<-matrix(nrow=N,ncol=100)
PLM<-matrix(nrow=N,ncol=4)
for (i in 1:N){
return<-exp(rnorm(100,nu,sigma))
#generate random uniform vector of annual inflation
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inflation<-runif(100,-0.01,0.03)
#define a new variable to track changing consumption
#initialize that variable to equal c
c1<-c
PLM[i,1]<-prod(return[1:10])^(1/10)-1
PLM[i,2]<-prod(return[11:20])^(1/10)-1
PLM[i,3]<-prod(return[21:30])^(1/10)-1
path[i,1]<-F
for (j in 2:100){
#multiply last consumption by current inflation factor
c1<-c1*exp(inflation[j])
path[i,j]<-path[i,j-1]*return[j]-c1
if (path[i,j]<=0) {break}}

PLM[i,4]=j}
PLM}

I run the simulation and fit a regression model.

sample<-PLSM.SR.inf(100,4,0.05,0.15,50000)
DR1<-sample[,1]
DR2<-sample[,2]
DR3<-sample[,3]
PoLo<-sample[,4]
fit<-lm(PoLo~DR1+DR2+DR3)
summary(fit)

Here is the model summery.

Call:
lm(formula = PoLo ~ DR1 + DR2 + DR3)

Residuals:
Min 1Q Median 3Q Max

-76.758 -14.429 -2.611 14.484 68.271

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 22.4349 0.1775 126.39 <2e-16 ***
DR1 413.5651 1.7195 240.52 <2e-16 ***
DR2 294.0551 1.7148 171.48 <2e-16 ***
DR3 165.6425 1.7152 96.57 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Residual standard error: 19.16 on 49996 degrees of freedom
Multiple R-squared: 0.6596, Adjusted R-squared: 0.6596
F-statistic: 3.229e+04 on 3 and 49996 DF, p-value: < 2.2e-16

In the table below I compare the coefficients and intercept I got here in the
’inflation model’ with the values we got in the chapter when we used
PLSM.SR(100,5,0.025,0.15,50000).

Coefficients of Regression Model
Variable Coefficient with inflation Coefficient in the chapter
(Intercept) 22.43 20.38

DR1 413.57 368.06
DR2 294.06 232.11
DR3 165.64 119.67

It looks like our inflation-adjusted-consumption model behaves similarly to the
model in the chapter. The ratio between the coefficients is roughly the same for both
models, this tells me that the sequence-of-returns risk is similar as well.





Chapter 7
Solutions

7.1 Original Question
Referring again to Figure 7.7, download the 1960 Canadian cohort (not period!)
death rate vector, @G [1960], and compute the fraction of those born in the year
1960, who survived to the age of 50 (in the year 2010.) Using our notation, that is
(50/(0. Compare the values to the corresponding numbers for the 1925 and 1940
cohort.
Answer
To solve this problem, I first had to download and import the 1960, 1940, and 1925
cohort death rate vectors. I imported the data from an Excel file, so your process
might be a bit different if you have a txt file.

I use an expression Q[!is.na(Q$Age),] which gives me the rows of Q where
Q$Age is not NA. Exclamation points are used in R to reverse a logical statement.
The term is.na(.) returns true if a value is NA and false otherwise. So
!is.na(Q$Age) returns a vector with TRUE where Q$Age is not NA, and FALSE
where Q$Age is NA. Now Q[!is.na(Q$Age),] returns the rows of Q where Q$Age
is not NA.

#load the Excel library and import the data
library(readxl)
Q<-read_excel("./HMD_CAD_q.xlsx", na = ".")
#clean up the data (remove NAs)
Q<-Q[!is.na(Q$Age),]
#create a table for each of the three cohorts
Q1960<-Q[Q$Year==1960,]
Q1925<-Q[Q$Year==1925,]
Q1940<-Q[Q$Year==1940,]

Once I had the death rates for each of the three cohorts, I convert them to life tables,
for males and females separately.

45
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#convert death rates to life table (female and male)
SF1960<-100000*cumprod(1-Q1960$Female)
SM1960<-100000*cumprod(1-Q1960$Male)
#repeat for 1940 cohort
SF1940<-100000*cumprod(1-Q1940$Female)
SM1940<-100000*cumprod(1-Q1940$Male)
#repeat for 1925 cohort
SF1925<-100000*cumprod(1-Q1925$Female)
SM1925<-100000*cumprod(1-Q1925$Male)

I then divide the surviving population at age 50 by 100,000 (the population at age
0). I repeat this process for the 1940 and 1925 cohort, and compare the results.

#get age 50 surviving fraction
#1960
> SF1960[50]/100000;SM1960[50]/100000
[1] 0.9429828
[1] 0.9060208
#1940
> SF1940[50]/100000;SM1940[50]/100000
[1] 0.8885221
[1] 0.8388726
#1925
> SF1925[50]/100000;SM1925[50]/100000
[1] 0.8197243
[1] 0.7580081

The results comparing the 50 year survival rate for the cohorts born in 1925, 1940,
and 1960 are in the table below:

50 year cohort survival rate
1925 cohort 1940 cohort 1960 cohort

Female 0.82 0.89 0.94
Male 0.76 0.84 0.91

The probability of living past 50 increases as time goes on, and women are more
likely than men to survive that long.

7.2 Original Question
Estimate the slope and intercept of ln[@G] for the 1940 cohort (both males and
females), using data from the age of 35 to 70. You can either do this using the
built-in least squares (a.k.a. linear model) function in R, called lm(.), or look-up
the formula for the slope and intercept (in any textbook on statistics) and compute
these values using brute-force. Please discuss some of the methodological concerns
with such a (small) set of numbers.



7 Solutions 47

Answer
I run a regression model on the values of ln[@G] for the 1940 cohort (both males
and females). Its best not to reinvent the wheel, so I use the lm(.) function instead
of looking up regression formulas. First I look at the male cohort.

fit<-lm(log(Q1940$Male)[c(35:70)]~c(35:70))
summary(fit)

Here is the output for the male set:

Call:
lm(formula = log(Q1940$Male)[c(35:70)] ~ c(35:70))

Residuals:
Min 1Q Median 3Q Max

-0.13562 -0.04202 0.01017 0.03595 0.16110

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -8.963466 0.058995 -151.94 <2e-16 ***
c(35:70) 0.070925 0.001102 64.34 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.06871 on 34 degrees of freedom
Multiple R-squared: 0.9919, Adjusted R-squared: 0.9916
F-statistic: 4140 on 1 and 34 DF, p-value: < 2.2e-16

The slope for the male linear regression model for ;=[@G] is 0.071. The intercept is
−8.963. Now I look at the female cohort:

fit<-lm(log(Q1940$Female)[c(35:70)]~c(35:70))
summary(fit)

Here is the output for the female set:

Call:
lm(formula = log(Q1940$Female)[c(35:70)] ~ c(35:70))

Residuals:
Min 1Q Median 3Q Max

-0.13002 -0.03089 0.01252 0.03170 0.06324

Coefficients:
Estimate Std. Error t value Pr(>|t|)
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(Intercept) -9.7160695 0.0387028 -251.0 <2e-16 ***
c(35:70) 0.0751446 0.0007232 103.9 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.04508 on 34 degrees of freedom
Multiple R-squared: 0.9969, Adjusted R-squared: 0.9968
F-statistic: 1.08e+04 on 1 and 34 DF, p-value: < 2.2e-16

The slope and intercept for ;=[@G] of the female cohort is 0.075 and −9.716
respectively. I see that women have a higher slope than men but a lower intercept.
This would imply that women’s mortality rate is lower than men at early ages
(closer to 35), but that difference narrows as they get older.

The sample size for each regression model is 35 points. This would be considered a
fairly small sample, however given the very high '2 value of over 99%, I conclude
that my sample size is big enough. Another possible issue is that the model inputs
are all between G = 35 and G = 70. This may be problematic when trying to
extrapolate mortality rates at ages above G = 70.

7.3 Original Question
Forecast or estimate the fraction of the 1960 cohort (who are 50 years-old in the
year 2010), who will survive to the age of 100, based on the methodology
described in the chapter. How does it compare to the 1925 cohort?
Answer
Since I need to forecast survival rates in the next few questions, I create a reusable
function LT(q) which takes in a vector of death rates and extrapolates the next 65
values, using the methodology shown in the chapter. The function then converts
that extended death rate vector into a life table. I use sum(!is.na(q)) to identify
the length of the original vector, by counting non NA values. The expression
!is.na(q) returns a vector of TRUE and FALSE values. The TRUE values appear
where the q vector has non NA values. TRUE is treated as the number 1 and FALSE as
0, so sum(!is.na(q)) is the number of non NA values in the q vector.

#this function takes a vector of death rates q
#runs regression and extrapolates life table forecast
LT<-function(q){
#identify last available death rate
l<-sum(!is.na(q))
#run regression on 36 to 70
fit<-lm(log(q)[c(36:70)]~c(36:70))
#get regression slope
m<-fit$coefficients[2]
#forecast 65 death rates after last value
q.new<-q[l]*exp(c(1:65)*m)
#append forecasted values to original death rate vector



7 Solutions 49

q<-append(q,q.new,after=l)
#convert death rates to life table
LT<-100000*cumprod(1-q)
return(LT)}

Notice that I begin the regression on the 36th value because that is the death rate of
people between their 35th and 36th birthday. I can now use this function to estimate
what fraction of those alive in 2010 will survive to age 100.

> LT(Q1960$Female)[101]/LT(Q1960$Female)[51]
[1] 0.2525011
> LT(Q1960$Male)[101]/LT(Q1960$Male)[51]
[1] 0.2753618
> LT(Q1940$Female)[101]/LT(Q1940$Female)[71]
[1] 0.2239078
> LT(Q1940$Male)[101]/LT(Q1940$Male)[71]
[1] 0.114978
> LT(Q1925$Female)[101]/LT(Q1925$Female)[86]
[1] 0.09768422
> LT(Q1925$Male)[101]/LT(Q1925$Male)[86]
[1] 0.03903571

The results are summarized in the table below:

Survival to age 100 conditional on being alive in 2010
1925 cohort 1940 cohort 1960 cohort

Female 0.10 0.22 0.25
Male 0.04 0.11 0.28

I see that the more recent the cohort’s birth year, the more likely they are to live to
100. I also see that for the 1960 cohort, the percentage of 50 year old males that
will survive to age 100 is higher than that of the females. This is consistant with
what I saw in the previous question that females have a higher slope for thier log
mortality rates, but a lower intercept.

7.4 Original Question
Please estimate values of (90/(60, which is the 30-year survival rate conditional on
being age G = 60, for the 1925, 1940 and 1960 cohort.
Answer
For this question I use the life-table function I generated in the last question. For
each cohort, I divide the fraction of survivors to age 90 by the fraction of survivors
to age 60.

> LT(Q1960$Female)[91]/LT(Q1960$Female)[61]
[1] 0.567688
> LT(Q1960$Male)[91]/LT(Q1960$Male)[61]
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[1] 0.5468121
> LT(Q1940$Female)[91]/LT(Q1940$Female)[61]
[1] 0.5042549
> LT(Q1940$Male)[91]/LT(Q1940$Male)[61]
[1] 0.3577371
> LT(Q1925$Female)[91]/LT(Q1925$Female)[61]
[1] 0.3446002
> LT(Q1925$Male)[91]/LT(Q1925$Male)[61]
[1] 0.183985

I summarized the results in the table below.

(90/(60
1925 cohort 1940 cohort 1960 cohort

Female 0.34 0.50 0.57
Male 0.18 0.36 0.55

I see that the 30-year survival rate conditional on being age G = 60 is always higher
for women than for men, and increases for later birth cohorts.

7.5 Original Question
Pick one other country (anyone) from the Human Mortality Database (HMD),
which should all look quite similar to Figure 7.7, and download one year (cohort)
death rates, create a 1940 cohort life table, and compare projected survival rates
(90/(60, conditional on age 60.
Answer
Following the same steps as question 7.1, I downloaded the 1940 cohort death rates
from Australia.

library(readxl)
Q1940_A <- read_excel("./HMD_AUS_q.xlsx",na=".")

I then use the LT(q) function I created in question 7.3, and obtain the projected
conditional survival rates similarly to question 7.4.

> #Australia 1940 female and male cohorts
> LT(Q1940_A$Female)[91]/LT(Q1940_A$Female)[61]
[1] 0.5575774
> LT(Q1940_A$Male)[91]/LT(Q1940_A$Male)[61]
[1] 0.3911386
> #Canada 1940 female and male cohorts
> LT(Q1940$Female)[91]/LT(Q1940$Female)[61]
[1] 0.5042549
> LT(Q1940$Male)[91]/LT(Q1940$Male)[61]
[1] 0.3577371
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My results are summarized in the table below:

1940 Cohort 30 Year Survival Rates (from age 60 to 90)
Canada Australia

Female 0.50 0.56
Male 0.36 0.39

I see that 60 year old Australians born in 1940 are more likely to survive past age
90 than their Canadian counterparts.





Chapter 8
Solutions

8.1 Original Question
Simulate # = 10, 000 random lives using the Gompertz model conditional on age
G = 40, with parameters (< = 85, 1 = 10) and compute the fraction of this group
who die between the ages of H = 75 and H = 95. Please repeat this experiment five
(5) times to obtain five (5) different estimates of this number. Finally, compare
those numbers to the analytic result using the TPXG(.) function. Discuss.
Answer
Correction: The part of this question in the textbook "with plus/minus one
dispersion coefficient (not standard deviation)" is a mistake and was removed in the
solution manual above.

In this question I compare the results of using a simulation to generate random lives
using the Gompertz model and the analytic results using the TPXG(.) function.
The R script can be seen below. First I generate 10, 000 random lifetimes
(conditional on age 40) using the GRAN(.) function and the parameters given in the
question. I tally how many of the results are between 35 and 55 and divide by
10, 000 (the group size) to get the fraction of the group that die between ages 75
and 95. I put this script inside a loop that runs five times. I can also choose to just
re-run the middle three lines five times and avoid looping.

#repeat 5 times
for (i in 1:5){
#generate a sample of 10,000 random lifetimes
z<-GRAN(10000,40,85,10)
#count the fraction that die between age 75 and 95
y<-length(z[(z>=35) & (z<=55)])/10000
#print results
print(y)}

53
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I will present the output along with the analytical solution in a table shortly.
Remember that since this is a random simulation, your simulation results will
probably vary slightly.

To solve the question analytically, I use the TPXG(.) function and subtract the
probability of dying past 95 from the probability of dying past 75, this gives me the
fraction expected to die between those two ages:

#probability of surviving past 75
analytic75<-round(TPXG(40,35,85,10),4)
#probability of surviving past 95
analytic95<-round(TPXG(40,55,85,10),4)
#probability of dying between 75 and 95
f<-analytic75-analytic95

The results are summarized in the table below:

Fraction of group who die between 75 and 95
Trial Fraction

GRAN1 0.6327
GRAN2 0.6352
GRAN3 0.6207
GRAN4 0.6338
GRAN5 0.6357
TPXG 0.6332

It looks like the results of running 10,000 simulations are very close to the analytic
result. I conclude that simulation results are a good proxy for the real value.

8.2 Original Question
Use the simulation “trick” (inverting the survival probability ?, and extracting C)
that I described in section #8.5 of this chapter, to create a script that simulates
exponential (i.e. not Gompertz) remaining lifetimes, with parameter _. Now use
that script to simulate # = 10, 000, with _ = 1/50, which is a mortality hazard rate
of 2%. Compute the fraction of random lives that died between time ) = 35 and
time ) = 55, and compare with the analytic expression. Discuss.
Answer
Exponential lifetimes have a constant mortality hazard rate so the age G is not
relevant. Here is the survival probability equation for surviving another C years (at
any age).

\ (C) = 4−_C

Inverting this equation gives me:
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C =
;=(\)
−_

I generate a sample of 10,000 possible \ values, using runif, that are uniformly
distributed between 0 and 1, and extract 10,000 C values from that sample, using the
above equation. I then measure what percentage of C values are between 35 and 55.

> #function simulates N exponential remaining lifetimes
> ERAN<-function(N,lambda){log(runif(N))/(-lambda)}
> #simulate sample
> z<-ERAN(10000,0.02)
> #measure fraction that dies between age 35 and 55
> length(z[(z>=35) & (z<=55)])/10000
[1] 0.1647

I see the analytic expression result is very close.

> #analytic expression P(T>35)-P(T>55)
> exp(-0.02*35)-exp(-0.02*55)
[1] 0.1637142

The results for exponential remaining lifetimes are around 16% which is much
lower than the 63% I got using a Gompertz lifetime in the previous question.

Note: Under an exponential remaining lifetime assumption, the probability of a
person age zero surviving to 35 is identical to the probability of a person age 40
surviving to 75. The exponential assumption is age agnostic, it does not care how
old I am, I am always equally likely to die within a given time period. This is due to
the memoryless property of exponential distribution, which you can look up online.

8.3 Original Question
Jack is 50, Jill is 45 and they have a daughter Joanne, who is 25. What is the
probability that Joanne will outlive both Jack and Jill? Assume they all “die”
according to the Gompertz law, with < = 80 for Jack, < = 90 for Jill and < = 95 for
Joanne, and assume that 1 = 10 for all three of them. Please use simulation based
techniques if you can’t figure-out and solve the relevant 3-dimensional integral.
Answer
Given that I am already using simulations throughout this chapter, it seems like a
more natural route than solving the integral. I use the GRAN(.) function to simulate
10,000 random ages of death for Jack, Jill and Joanne.

#create Jack sample
zdat.Jack<-(50+GRAN(10000,50,80,10))
#create Jill sample
zdat.Jill<-(45+GRAN(10000,49,90,10))
#create Joanne sample
zdat.Joanne<-(25+GRAN(10000,25,95,10))
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Next, I write a script which counts the number of times where Joanne’s age of death
is greater than both Jack and Jill’s. I do this by creating a new variable called
outliveboth which is originally set to zero and gets incremented by one
whenever Joanne’s age of death is greater than both Jack and Jill.

#initialize counter
outliveboth<-0
#loop through sample
for (i in 1:10000){
#check if Joanne outlives both parents
if (zdat.Joanne[i]>=zdat.Jack[i] && zdat.Joanne[i]>=

zdat.Jill[i]){
#increment counter if she does
outliveboth<-outliveboth+1}}

I then divide outliveboth by my total sample size of 10,000 to get the probability
of Joanne outliving both her parents.

> #get fraction where Joanne outlives parents
> outliveboth/10000
[1] 0.6449

I see that there is about a 64% chance Joanne will outlive both Jack and Jill.

8.4
Original Question
Simulate two samples of # = 10, 000 random Gompertz lifetimes, conditional on
age G = 40, but one with (< = 75, 1 = 13) and the other with (< = 95, 1 = 7), and
combine them into one (larger) vector of 20,000 numbers. Now, create one cohort
life table (yes, for this combined mixture), extract the one @G vector, from the age of
G = 40 to the age of G = 100. Plot the log one-year death rate (similar to Figure 8.5),
and run a simple linear regression model, recall the fit<-lm(.) command, to
estimate the slope of log one-year death rate. How good is the fit over the range
(40, 100)? How good is the fit over the range (70, 100)? Discuss your results, and
compare with Figure 8.5.
Answer
To solve this problem, first I create the two samples of # = 10, 000 random
Gompertz lifetimes, and combine them into one larger vector.

#create sample 1
a<-GRAN(10000,40,75,13)
#create sample 2
b<-GRAN(10000,40,95,7)
#combine the sample
zdat<-append(b,a,after=10000)



8 Solutions 57

I convert the lifetime samples into a cohort life table and extract the @G vector.

#create cohort life table
zdat.CLT<-LTLD(zdat)
#isolate life table values for x=40 to x=100
z1.CLT<-zdat.CLT[1:61]
#extract qx vector from life table
qx40to100<-(-diff(z1.CLT))/z1.CLT[-length(z1.CLT)]

Next, I plot ;=(@G).

#plotting ln(q_x)
plot(log(qx40to100))

The figure below shows the resulting plot from the regression over x=40 to x=100.
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Now I create the linear model and evaluate the coefficients and goodness of fit.

> #run simple linear regression
> fit<-lm(log(qx40to100)~c(1:60))
> #get intercept and slope
> fit$coefficients
(Intercept) c(1:60)
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-5.9626410 0.0693883
> #get goodness of fit
> summary(fit)$r.squared
[1] 0.9874493

I repeat this process over the range (70,100).

> #repeat with x=70 to x=100
> z2.CLT<-zdat.CLT[31:61]
> qx70to100<-(-diff(z2.CLT))/z2.CLT[-length(z2.CLT)]
> #plotting ln(q_x)
> plot(log(qx70to100))
> #run simple linear regression
> fit<-lm(log(qx70to100)~c(1:30))
> #get intercept and slope
> fit$coefficients
(Intercept) c(1:30)
-4.05723294 0.07941847
> #get goodness of fit
> summary(fit)$r.squared
[1] 0.9718257

The figure below shows the resulting plot from the regression over x=70 to x=100.
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The (40,100) range has a slightly better fit than the (70,100) range, as reflected in
the higher R-squared value. This makes sense since the (70,100) range sample
starts with fewer people, as many have died between age 40 and 70, so the sample is
smaller and hence there is more variance. Both linear regression models are
statistically significant, and have very similar slopes and intercepts, with the 70 to
100 having a slightly higher slope and intercept. When I compare these two models
and plots with the model in the chapter in Figure 8.5, I see that Figure 8.5 has a
better linear fit and also has a higher R-squared value of 0.9987. At first I thought
this can be explained by the larger sample size in the chapter of 100,000 versus
20,000 here. I reran the script here using two samples of 100,000 and the goodness
of fit did not improve. Then I tried simulating my blended sample at age zero and
looking at 120 years of mortality rates instead of sixty years, but the goodness of fit
was still not as good as the 0.9987 obtained in the chapter. Finally I tried moving
the modal m values closer to each other from (75,95) to (84,86). That did the trick
and raised my R-squared values close to 0.998. I conclude that combining two
Gompertz distributed samples does not result in a Gompertz distribution if the
original two samples have different modal parameters.

8.5 Original Question
Finally, some finance and economics. Imagine that you are G = 40 years-old and
offered a retirement income “product” that pays you $100, 000 (in real, inflation
adjusted dollars) if-and-when you reach that age of H = 80. And, if you never reach
that age, you get nothing. Assume that long-term (continuously compounded)
interest rate is 1.25%, so the present value (for 40 years) of this $100, 000 is
approximately $60, 000. Of course, there is a chance you will not survive to age 80,
so you shouldn’t be charged $60, 000. So, please use the TPXG(.) function to
estimate the survival probability, and use that information to “value” this product.
As far as parameter estimates are concerned, solve this problem assuming two
cases. The (what I would call) sick male one, with (< = 75, 1 = 13) and the healthy
female one with (< = 95, 1 = 7).
Answer
To determine the value of the product, I first calculate the survival probabilities for
the two cases using the TPXG(.) function. I then determine the expected value of
the product by multiplying the survival probability by $60, 000, which is the
present value of the survival contingent payment. Note that this product is a lump
sum bullet payment, not an annuity.

> #survival probablity for sick male
> tpx_m<-TPXG(40,40,75,13)
> #survival probabilty for healthy female
> tpx_f<-TPXG(40,40,95,7)
> #product value for sick male
> 60000*tpx_m
[1] 14776.23
> #product value for sick female
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> 60000*tpx_f
[1] 53378.73

The value of the product is $53, 378.73 for the healthy female and and $14, 776.23
for the unhealthy male. It makes sense that healthy people who are more likely to
live longer will have greater benefit and value from their retirement products.



Chapter 9
Solutions

9.1 Original Question
Simulate # = 10, 000 random Gompertz lifetimes, with a modal value of (< = 88)
and dispersion value of (1 = 10), as well as random portfolio longevity values with
a = 2.5% and f = 15%. Call these vectors zdat.hl and zdat.pl. Compute the
lifetime ruin probability i, for initial withdrawal rates of b = 4% using the method
explained in the chapter. Very simple. But in addition, please compute the expected
number of shortfall years, in the event you are alive when the money runs out.
How? Think very carefully about the dots under the diagonal in Figure 9.4, and
then measure the magnitude by which ! b falls short of )G .
Answer
Similarly to what was done in the chapter, I simulate 10,000 random Gompertz
lifetimes with the provided parameters, as well as 10,000 random portfolio
longevity values.

#simulate Gompertz random lifetimes
zdat.hl<-GRAN(10000,65,88,10)
#simulate random portfolio longevity values
zdat.pl<-PLSM(1,0.04,0.025,0.15,10000)

To compute the lifetime ruin probability, I iterate through the random Gompertz
lifetime vector zdat.hl and the random portfolio longevity vector zdat.pl, and
increment the ruined variable to keep count of every time the zdat.hl value is
greater than the zdat.pl value. For every time the zdat.hl value is greater than
the zdat.pl value, I add the years by which it is greater to the shortfall variable
to get the total number of shortfall years.

#initialize count of ruined
ruined<-0
#initialize shortfall years
shortfall<-0
#loop through lifetime and portfolio samples
for (i in 1:10000){

61
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#if lifetime exceeds portfolio longevity
if(zdat.hl[i]>=zdat.pl[i]){
#increment count of ruined
ruined<-ruined+1
#add shortfall years to total shortfall count
shortfall<-shortfall+(zdat.hl[i]-zdat.pl[i])}}

I divide the count of ruined individuals by the sample size to get the lifetime
probability of ruin.

> #lifetime ruin probability
> ruined/length(zdat.hl)
[1] 0.1486

I divide the total number of shortfall years by the number of ruined individuals to
get the expected number of shortfall years. Note that the expected number of
shortfall years is conditioned on being ruined, because I am dividing the total
number of shortfall years by the number of ruined people, and not by the total
sample size of 10,000.

> #expected number of shortfall years
> shortfall/ruined
[1] 6.67663

The lifetime ruin probability i, for an initial withdrawal rate of b = 4% is 14.86%,
and the expected number of shortfall years is 6.68. Note, I assumed that G = 65, if I
assumed a younger age of retirement, then the ruin probability and expected
shortfall would be higher.

9.2 Original Question
Going back to the LRPG(.) function, locate the spending rate b that leads to at most
a 3% lifetime ruin probability at retirement ages G = 55, 65, 75, under a a = 2.5%
real rate of return assumption, f = 15%, and Gompertz (< = 88, 1 = 10).
Answer
I create a function that takes in an age G and calculates the highest b that results in a
lifetime ruin probability below 3% for that given age. The function begins by
creating a placeholder for the solution xi_top, and setting it to zero. It then loops
through possible values of b between 0% and 10% in ascending order. If a value of
b results in a lifetime ruin probability below 3%, it replaces xi_top with that b.
The final value of xi_top is the highest b that has a ruin probability below 3%.

#function returns highest allowed xi for a given age
highest_spending<-function(age){
#initialize maximum xi value at 0
xi_top<-0
#loop through increasing xi values
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for (xi in 1:10000*.00001){
#if the ruin probability is below 3%
if (LRPG(0.025,xi,age,88,10)<0.03){
#replace xi_top with the latest xi
xi_top<-xi}}

print(xi_top)}

I run my function for ages 55,65,75.

> highest_spending(55)
[1] 0.03673
> highest_spending(65)
[1] 0.04225
> highest_spending(75)
[1] 0.05189

The results are summarized in the table below.

Approximate Spending Rate Leading to 3% LRP
Retirement Age Initial Withdrawal Rate

55 3.67%
65 4.22%
75 5.19%

If I retire at 55 then I can spend at most 3.67% of my initial retirement wealth each
year, assuming I want to keep my probability of ruin below 3%. If I wait till age 75
to retire, then I can spend up to 5.19% a year.

9.3 Original Question
I introduced three different estimates for the lifetime ruin probability, denoted by
i := Pr[)G ≥ ! b ]. The first revolved around simulating zdat.pl, for portfolio
longevity and zdat.hl for human longevity and comparing vectors. The second
method revolved around simulating the stochastic present value of the wealth
trajectory until the time of death, and counting the number of negative values via
the VARPHI.SM function. The third and final method was based on the moment
matching approximation to the stochastic present value, which (although rushed)
was captured in the VARPHI.MM function. Compare the accuracy (and speed) of
these methods by creating a table of i values for initial withdrawal rates:
b = 2%, 4%, 6%, assuming two pairs: (a = 2.5%, f = 10%) and
(a = 4%, f = 25%). Discuss results.
Answer
I begin by writing a function method1(.) that estimates i using the first method
similarly to question 9.1. For the second and third method, I use the functions
defined in the chapter.
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#create simulation function
method1<-function(N,x,m,b,xi,nu,sigma){
#simulate random lifetimes
zdat.hl<-GRAN(N,x,m,b)
#simulate random portfolio longevities
zdat.pl<-PLSM(1,xi,nu,sigma,N)
#fraction where lifetime exceeds portfolio longevity
return(sum(zdat.hl>=zdat.pl)/length(zdat.hl))}

Now, I estimate the lifetime ruin probabilities for the initial withdrawal rates
b = 2%, 4%, 6% using all three methods with # = 1, 000, 000, a = 0.025, f = 0.1,
G = 55, < = 88 and 1 = 10. I assume the first method that simulates and compares
the values of zdat.pl and zdat.hl is the most accurate since I have a very large
sample size. I measure the speed of these methods by recording the start
system-time before I run the simulation, and then taking the difference between the
system-time right after it finishes running. System-time is a reading of the
computer’s internal clock, and is a very useful tool for measuring run time.

#set sample size and initialize parameters
N<-1000000; x<-55; m<-88; b<-10;
nu<-0.025; sigma<-0.1
#loop though our xi values
for (xi in c(0.02,0.04,0.06)){
#record start time
tic<-Sys.time()
#run first method
m1<-round(method1(N,x,m,b,xi,nu,sigma),5)
#measure run time
toc<-round(Sys.time()-tic,5)
#print parameter, method name, varphi, and run time
print(c(’xi=’,xi,’m1=’,m1,toc))
#record start time
tic<-Sys.time()
#run second method
m2<-round(VARPHI.SM(N,x,m,b,xi,nu,sigma),5)
#measure run time
toc<-round(Sys.time()-tic,5)
#print parameter, method name, varphi, and run time
print(c(’xi=’,xi,’m2=’,m2,toc))
#record start time
tic<-Sys.time()
#run third method
m3<-round(VARPHI.MM(x,m,b,xi,nu,sigma),5)
#measure run time
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toc<-round(Sys.time()-tic,5)
#print parameter, method name, varphi, and run time
print(c(’xi=’,xi,’m3=’,m3,toc))}

Here is the output for a = 0.025 and f = 0.1. The last number in each row is the
time (in seconds) it took for that method to run.

[1] "xi=" "0.02" "m1=" "0.00889" "41.99483"
[1] "xi=" "0.02" "m2=" "0.01076" "4.18273"
[1] "xi=" "0.02" "m3=" "0.01571" "0.01561"
[1] "xi=" "0.04" "m1=" "0.24787" "31.24326"
[1] "xi=" "0.04" "m2=" "0.28423" "3.99255"
[1] "xi=" "0.04" "m3=" "0.24883" "0"
[1] "xi=" "0.06" "m1=" "0.62079" "24.04333"
[1] "xi=" "0.06" "m2=" "0.66854" "3.9703"
[1] "xi=" "0.06" "m3=" "0.63393" "0"

I then repeat the process but with a = 0.04 and f = 0.25

N<-1000000; x<-55; m<-88; b<-10;
nu<-0.04; sigma<-0.25
for (xi in c(0.02,0.04,0.06)){
tic<-Sys.time()
m1<-round(method1(N,x,m,b,xi,nu,sigma),5)
toc<-round(Sys.time()-tic,5)
print(c(’xi=’,xi,’m1=’,m1,toc))
tic<-Sys.time()
m2<-round(VARPHI.SM(N,x,m,b,xi,nu,sigma),5)
toc<-round(Sys.time()-tic,5)
print(c(’xi=’,xi,’m2=’,m2,toc))
tic<-Sys.time()
m3<-round(VARPHI.MM(x,m,b,xi,nu,sigma),5)
toc<-round(Sys.time()-tic,5)
print(c(’xi=’,xi,’m3=’,m3,toc))}

Here is the output for a = 0.04 and f = 0.25.

[1] "xi=" "0.02" "m1=" "0.08787" "41.26497"
[1] "xi=" "0.02" "m2=" "0.09496" "3.95648"
[1] "xi=" "0.02" "m3=" "0.08467" "0.1024"
[1] "xi=" "0.04" "m1=" "0.28652" "33.11393"
[1] "xi=" "0.04" "m2=" "0.30728" "3.92965"
[1] "xi=" "0.04" "m3=" "0.3067" "0"
[1] "xi=" "0.06" "m1=" "0.47909" "29.99073"
[1] "xi=" "0.06" "m2=" "0.51032" "3.89696"
[1] "xi=" "0.06" "m3=" "0.53719" "0"
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The resulting i estimates are summarized in the tables below.

LRP values for a = 2.5% and f = 10%
b Method1 VARPHI.SM VARPHI.MM

2% 0.00889 0.01076 0.01571
4% 0.24787 0.28423 0.24883
6% 0.62079 0.66854 0.63393

LRP values for a = 4% and f = 25%
b Method1 VARPHI.SM VARPHI.MM

2% 0.08787 0.09496 0.08467
4% 0.28652 0.30728 0.3067
6% 0.47909 0.51032 0.53719

I see the second and third method have similar accuracy, as they differ from the first
method by roughly the same amount. The speed of these methods differ greatly.
The first method is about ten times slower than the second method, and the third
method is virtually instantaneous, as it does not use simulation. Notice that as b
increases, the lifetime ruin probability increases.

9.4 Original Question
Advanced: Modify the VARPHI.SM from (ΔC = 1/52) to (ΔC = 1/12), and compare
numerical results for standard (G, <, 1) and (b, a, f) values.
Answer
I create a new function VARPHI.SM.12 where I change the (ΔC = 1/52) value to
(ΔC = 1/12) by replacing 52 with 12 in the VARPHI.SM function.

VARPHI.SM.12<-function(N,x,m,b,xi,nu,sigma){
V<-c()
#replaced 52 with 12 and renamed ’wks’ to ’months’
months<-round(GRAN(N,x,m,b)*12,0)+1
for (i in 1:N){
#replaced 52 with 12 and ’wks’ with ’months’
sB<-sigma*sqrt(1/12)*cumsum(rnorm(months[i]))
#replaced 52 with 12 and ’wks’ with ’months’
Z<-exp((nu/12)*c(1:(months[i]))+sB)
#replaced 52 with 12
V[i]<-sum((1/Z)/12)}

sum(V>=1/xi)/length(V)}

The results of both the VARPHI.SM and VARPHI.SM.12 functions, taking various
parameters can be seen below.

> VARPHI.SM(10000,65,88,10,0.04,0.025,0.10)
[1] 0.1143
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> VARPHI.SM.12(10000,65,88,10,0.04,0.025,0.10)
[1] 0.1168
>
> VARPHI.SM(10000,65,88,10,0.04,0.04,0.25)
[1] 0.1915
> VARPHI.SM.12(10000,65,88,10,0.04,0.04,0.25)
[1] 0.1864
>
> VARPHI.SM(10000,65,88,10,0.05,0.025,0.10)
[1] 0.262
> VARPHI.SM.12(10000,65,88,10,0.05,0.025,0.10)
[1] 0.2665
>
> VARPHI.SM(10000,65,88,10,0.05,0.04,0.25)
[1] 0.2874
> VARPHI.SM.12(10000,65,88,10,0.05,0.04,0.25)
[1] 0.2827
>
> VARPHI.SM(10000,65,88,10,0.06,0.025,0.10)
[1] 0.4252
> VARPHI.SM.12(10000,65,88,10,0.06,0.025,0.10)
[1] 0.4261
>
> VARPHI.SM(10000,65,88,10,0.06,0.04,0.25)
[1] 0.3699
> VARPHI.SM.12(10000,65,88,10,0.06,0.04,0.25)
[1] 0.3772

It looks like the monthly and weekly models yield roughly the same results.

9.5 Original Question
Advanced: Modify the PLSM simulation from yearly to monthly and compare
results with the answers to question 9.4.
Answer
I use the PLSM.12 function I created in question 5.1.

PLSM.12<-function(F,c,nu,sigma,N){
path<-matrix(nrow=N,ncol=1200)
PLV<-c()
for (i in 1:N){
return<-exp(rnorm(1200,nu/12,sigma/sqrt(12)))
path[i,1]<-F
for (j in 2:1200){
path[i,j]<-path[i,j-1]*return[j]-(c/12)
if (path[i,j]<=0) {break}}
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PLV[i]=j/12}
PLV}

I create a new function called method1.12 which is the same as the method1
function from question 9.3 but I replace PLSM with PLSM.12.

#create simulation function
method1.12<-function(N,x,m,b,xi,nu,sigma){
#simulate random lifetimes
zdat.hl<-GRAN(N,x,m,b)
#simulate random portfolio longevities USING MONTHLY MODEL
zdat.pl<-PLSM.12(1,xi,nu,sigma,N)
#fraction where lifetime exceeds portfolio longevity
return(sum(zdat.hl>=zdat.pl)/length(zdat.hl))}

I now run method1.12 alongside VARPHI.SM.12 and VARPHI.SM like in question
9.4.

> VARPHI.SM(10000,65,88,10,0.04,0.025,0.10)
[1] 0.1151
> VARPHI.SM.12(10000,65,88,10,0.04,0.025,0.10)
[1] 0.1231
> method1.12(10000,65,88,10,0.04,0.025,0.10)
[1] 0.1131
>
> VARPHI.SM(10000,65,88,10,0.04,0.04,0.25)
[1] 0.1936
> VARPHI.SM.12(10000,65,88,10,0.04,0.04,0.25)
[1] 0.1917
> method1.12(10000,65,88,10,0.04,0.04,0.25)
[1] 0.1967
>
> VARPHI.SM(10000,65,88,10,0.05,0.025,0.10)
[1] 0.2632
> VARPHI.SM.12(10000,65,88,10,0.05,0.025,0.10)
[1] 0.269
> method1.12(10000,65,88,10,0.05,0.025,0.10)
[1] 0.2589
>
> VARPHI.SM(10000,65,88,10,0.05,0.04,0.25)
[1] 0.2828
> VARPHI.SM.12(10000,65,88,10,0.05,0.04,0.25)
[1] 0.2857
> method1.12(10000,65,88,10,0.05,0.04,0.25)
[1] 0.2774
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>
> VARPHI.SM(10000,65,88,10,0.06,0.025,0.10)
[1] 0.4254
> VARPHI.SM.12(10000,65,88,10,0.06,0.025,0.10)
[1] 0.427
> method1.12(10000,65,88,10,0.06,0.025,0.10)
[1] 0.4227
>
> VARPHI.SM(10000,65,88,10,0.06,0.04,0.25)
[1] 0.3652
> VARPHI.SM.12(10000,65,88,10,0.06,0.04,0.25)
[1] 0.3723
> method1.12(10000,65,88,10,0.06,0.04,0.25)
[1] 0.3615

It appears that method1.12 usually results in slightly lower ruin probabilities than
the other two functions tested here, yet still very close.





Chapter 10
Solutions

10.1 Original Question
Please use integration techniques described in this chapter to value an immediate
life annuity (factor) at the age of G = 50, that pays $1 of income for life until age
H = 85, but then if-and-when you reach the age of H = 85, the payment is reduced
by 50% to only $0.50, from that point onward. Assume the usual (< = 88, 1 = 10)
Gompertz parameters, and valuation rates of E = 1% as well as E = 5%. How does
the value (or annuity factor) compare to a basic, simple immediate annuity that pays
$1 for life?
Answer
To solve this problem, I use the integration technique for valuing an immediate life
annuity but I split the integral into two parts, one from 0 to 35, and another from 35
to infinity. For the first 35 years (from age 50 to 85) $1 is paid annually, and after
that $0.50 is paid every year.

> #v=0.01
> #set parameters
> x<-50;y<-35;m<-88;b<-10;v<-0.01
> #define function to integrate
> integrand<-function(t){exp(-v*t+exp((x-m)/b)*(1-exp(t/b)))}
> #integrate over first 35 years
> a<-integrate(integrand,0,y)$value
> #integrate over 35 to infinity and multiply by 0.5
> b<-(integrate(integrand,y,Inf)$value)*0.5
> #add both parts to get total value
> a+b
[1] 26.59798

The value of the annuity with the deferred 50% reduction is $26.60 under a 1%
valuation rate. Below is the value of the basic annuity with no reduction, under the
same valuation rate.

71
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> #value of original annuity
> integrate(integrand,0,Inf)$value
[1] 31.1367

I see that reducing the payout to $0.50 per year after age 85 lowers the value of the
annuity from $31.14 to $26.60, which is a reduction of about 15%.

I repeat this process for E = 5%.

> #v=0.05
> x<-50;y<-35;m<-88;b<-10;v<-0.05
> #define function to integrate
> integrand<-function(t){exp(-v*t+exp((x-m)/b)*(1-exp(t/b)))}
> #integrate over first 35 years
> a<-integrate(integrand,0,y)$value
> #integrate over 35 to infinity and multiply by 0.5
> b<-(integrate(integrand,y,Inf)$value)*0.5
> #add both parts to get total value
> a+b
[1] 15.24508

And here is the value of the regular annuity under the same 5% valuation rate.

> #value of original annuity
> integrate(integrand,0,Inf)$value
[1] 16.98737

Under a 5% valuation rate, the new product is only 10% cheaper than the basic
annuity. Here is a table summarizing the values.

Value of Immediate Life Annuity
Basic Annuity New Product Price Difference

E = 0.01 31.14 26.60 15% Reduction
E = 0.05 16.99 15.25 10% Reduction

I see that at higher valuation rates, the new product’s value is closer to that of the
basic annuity. This makes sense intuitively, since the value of payments in 35 years
is much lower when I assume higher valuation rates, so cutting those distant
payments in half has a smaller effect on the overall value.

10.2 Original Question
At the very start of this chapter, I simulated Gompertz lifetimes and effectively
valued an immediate life annuity by computing the average RGOA(.) value for each
of those # = 10, 000 random lifetimes. That was another way of computing the
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actuarial present value (APV). Using the same idea, please use simulation
techniques to compute the APV of a deferred annuity, issued at age G = 50, which
begins paying at age H = 80, and assuming a d = 1% cost of living adjustment. In
other words, I would like you to replicate the payout numbers displayed in Table
10.1, assuming the same Gompertz parameters.
Answer
I loop through the values of < = 84, 88, 92, 96 and simulate 10,000 random
lifetimes for each < value using our GRAN(.) function. First I calculate the
expected age at death for each < by averaging the remaining lifetimes and adding
50. Note that expected age at death is not used to calculate the value of the deferred
annuity, but it does appear in table 10.1, so I calculate it here.

Next I compute the APV of the deferred annuity. First I subtract 30 from all the
remaining random lifetimes, and replace any resulting negative numbers with zeros
to get the number of years the deferred annuity actually pays each person. Now I
loop through the valuation rates 1%, 2%, 3%, 4% and take the average present value
of the annuity deferred by thirty years, which I calculate using the RGOA(.)
function divided by (1 + E)30. I divide $1, 000 by the average present value of the
annuity, and then divide the result by 12, to get the monthly payments. Here is the
code.

#loop through modal values
for (m in c(84,88,92,96)){
#simulate 10000 Gompertz random lifetimes
zdat<-GRAN(10000,50,m,10)
#expected age at death
print(mean(zdat)+50)
#number of years receiving payout
zdat<-zdat-30; zdat[zdat<0]<-0
#loop through interest rates
for (v in c(0.01,0.02,0.03,0.04)){
#average pv of deferred payments
pv<-mean(RGOA(0.01,v,zdat)/(1+v)^30)
#monthly income
m.income<-(1000/pv)/12
print(c(m,v,m.income))}}

Here is the output which I use to replicate Table 10.1.

[1] 79.61198
[1] 84.000 0.010 27.042
[1] 84.00000 0.02000 38.54984
[1] 84.00000 0.03000 54.67208
[1] 84.00000 0.04000 77.15196
[1] 83.05014
[1] 88.00000 0.01000 17.69942
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[1] 88.0000 0.0200 25.5126
[1] 88.00000 0.03000 36.55918
[1] 88.00000 0.04000 52.09365
[1] 87.00995
[1] 92.00000 0.01000 12.16734
[1] 92.00000 0.02000 17.75628
[1] 92.00000 0.03000 25.73651
[1] 92.00000 0.04000 37.06116
[1] 90.76901
[1] 96.000000 0.010000 9.121442
[1] 96.00000 0.02000 13.49968
[1] 96.00000 0.03000 19.81988
[1] 96.00000 0.04000 28.87807

Deferred: monthly income at 80 per $1000 premiums at 50
Gompertz mode < = 84 < = 88 < = 92 < = 96
� [)50] + 50 79.61 83.05 87.01 90.77
E = 1% $27.04 $17.70 $12.17 $9.12
E = 2% $38.55 $25.51 $17.76 $13.50
E = 3% $54.67 $36.56 $25.74 $19.82
E = 4% $77.15 $52.09 $37.06 $28.88

My results are close to those in the chapter.

10.3 Original Question
The derivation in Section 10.10 provides an explicit expression for the value of an
immediate life annuity under an (expanded) Gompertz-Makeham law. Assuming
(< = 88, 1 = 10), please value an immediate annuity at age G = 65, under E = 1%
and E = 3%, assuming that Makeham constant _ = 3/1000. This means that every
year three-out-of-a-thousand people die accidentally. So, how much of a difference
does accidental deaths have on annuity valuations at advanced ages?
Answer
I code the explicit expression from the chapter as a function in R. First I must
define the Gamma function.

#define gamma function
G<-function(alpha,beta){
integrand<-function(t){(t^(alpha-1)*exp(-t))}
integrate(integrand,beta,Inf)$value}

Now I can define my annuity factor function a(x,m,b,r,u,l). Note that I
replaced E with A, so that my variable names match the form of the expression in
the chapter. I also use ; as a shorthand for _ (lambda), the Greek equivalent to ;.
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#annuity factor under Gompertz-Makeham
a<-function(x,m,b,r,u,l){
#standardize age
eta<-exp((x-m)/b)
#define Gamma function parameters
alpha<-(-(r+l)*b)
beta<-eta*exp(u/b)
#set denominator of function
denominator<- (eta^(-(r+l)*b))*exp(-eta)
#put it all together
b*G(alpha,beta)/denominator}

I now run this function with the parameters from the question using E = 1% and
E = 3%.

> # v=1%
> a(65,88,10,0.01,0,3/1000)
[1] 17.28952
> # v=3%
> a(65,88,10,0.03,0,3/1000)
[1] 13.97794

I see that the increase in valuation rate makes the annuity cheaper, because it lowers
the value of future payments. Now I check how much of an impact accidental death
has on the value of the annuity, by dividing the annuity factor when _ = 3/1000 by
the annuity factor when _ = 0. I subtract this fraction from 1 to get the percentage
decrease caused by accidental death.

> # cost discount from accidental death (v=1%)
> 1-a(65,88,10,0.01,0,3/1000)/a(65,88,10,0.01,0,0)
[1] 0.03348231
> # cost discount from accidental death (v=3%)
> 1-a(65,88,10,0.03,0,3/1000)/a(65,88,10,0.03,0,0)
[1] 0.02989935

The assumption that 3 in 1000 people die accidentally every year reduces the value
of the immediate life annuity by about 3%. For a higher valuation rate, accidental
death has less impact on the value of the annuity.

10.4 Original Question
Value a 100% joint life annuity, under a E = 3% valuation rate, when G1 = 65,
G2 = 60, but assuming that < = 88 and 1 = 10 for both lives. (I.e. they are
homogeneous lives.) Can you simplify the expression for the annuity value?
Answer
First I solve this problem using the ING function from the chapter.
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x1<-65;m1<-88;b1<-10
x2<-60;m2<-88;b2<-10
v<-0.03
ING<-function(t){
exp(-v*t)*(exp(exp((x1-m1)/b1)*(1-exp(t/b1)))+

exp(exp((x2-m2)/b2)*(1-exp(t/b2)))-
exp(exp((x1-m1)/b1)*(1-exp(t/b1)))*
exp(exp((x2-m2)/b2)*(1-exp(t/b2))))}

I integrate ING from zero to infinity to get the value of the joint life annuity.

> integrate(ING,0,Inf)$value
[1] 18.50969

The value of this 100% joint life annuity is $18.51 per $1 of lifetime income.

Now to simplify the expression, I replace m1 and m2 with m, and b1 and b2 with b. I
also name the parts of the function that are reused multiple times so that the
expression is much shorter.

ING1<-function(t){
z<-(1-exp(t/b))
a<-exp(exp((x1-m)/b)*z)
b<-exp(exp((x2-m)/b)*z)
exp(-v*t)*(a+b-a*b)}

Integrating this simpler function yields the same result, as expected.

> integrate(ING1,0,Inf)$value
[1] 18.50969

10.5 Original Question
In the above "problem", assume the couple request a 15-year period certain on their
life annuity. What is the annuity factor in that case?
Answer
I use the ING function from the previous question, along with the script from the
chapter in section 10.8 to add a 15-year period certain.

> x1<-65;m1<-88;b1<-10
> x2<-60;m2<-88;b2<-10
> v<-0.03;PC<-15
> (1/v)*(1-exp(-v*PC))+integrate(ING,PC,Inf)$value
[1] 18.65357
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The resulting annuity factor is $18.65. Note that the annuity factor only increases
by 0.14 when I add a 15-year period certain, because the probability of both people
dying within 15 years is very small.





Chapter 11
Solutions

11.1 Original Question
How would you modify the IDDR(.) algorithm to account for a (married) couple
for which the Gompertz parameters are (<1, 11) and (<2, 12) respectively. Assume
that their time and risk preferences (d, W) are identical, and they desire an intelligent
draw down strategy that continues until the second member of the couple dies. To
be clear, the pension continues at full 100% of c until the second person dies.
Answer
To solve this problem I must replace the individual survival probability in the
IDDR(.) function with the couple’s joint survival probability. Survival probability
appears three times in the IDDR(.) function, once explicitly in the k3 term as
TPXG(.), and twice it is embedded within the GTLA(.) function. I replace
GTLA(.) with GTLA.2(.) which is the actuarial present value of a joint temporary
life annuity. The new GTLA.2(.) function integrates the ING(.) function similarly
to what was done in section 10.9 in the previous chapter.

#see section 10.9 in chapter
GTLA.2<-function(x1,x2,m1,m2,b1,b2,r,tau){
ING<-function(t){
exp(-r*t)*(exp(exp((x1-m1)/b1)*(1-exp(t/b1)))+

exp(exp((x2-m2)/b2)*(1-exp(t/b2)))-
exp(exp((x1-m1)/b1)*(1-exp(t/b1)))*
exp(exp((x2-m2)/b2)*(1-exp(t/b2))))}

integrate(ING,0,tau)$value}

The tPx.2(.) function which replaces TPXG(.) uses the joint survival probability
portion of the ING(.) function.

#see section 10.9 in chapter
tPx.2<-function(x1,x2,m1,m2,b1,b2,t){
exp(exp((x1-m1)/b1)*(1-exp(t/b1)))+
exp(exp((x2-m2)/b2)*(1-exp(t/b2)))-

79
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exp(exp((x1-m1)/b1)*(1-exp(t/b1)))*
exp(exp((x2-m2)/b2)*(1-exp(t/b2)))}

Now I have everything I need to modify IDDR(.) and create IDDR.2(.).

#here is the resulting function
IDDR.2<-function(Fx,pi,x1,x2,m1,m2,b1,b2,r,rho,gam){
k<-(r-rho)/gam
WDT<-function(tau){
K1<-((Fx/pi+1/r)*exp(r*tau)-1/r)/
(
#replace GTLA with GTLA.2
GTLA.2(x1-b1*log(gam),x2-b2*log(gam)

,m1,m2,b1,b2,r-k,tau)
*exp(r*tau))

K2<-exp(k*tau)
#replace TPXG with tPx.2
K3<-tPx.2(x1,x2,m1,m2,b1,b2,tau)^(1/gam)
K1*K2*K3-1}

tau<-uniroot(WDT,lower=0,upper=100)$root
Cx<-((Fx+pi/r)*exp(r*tau)-pi/r)/
#replace GTLA with GTLA.2
(GTLA.2(x1-b1*log(gam),x2-b2*log(gam),m1,m2,b1,b2,r-k,tau)
*exp(r*tau))

(Cx-pi)/Fx}

I take my new function for a test drive and compare its output for various scenarios.

> #base test
> IDDR.2(100,0.04,65,60,85,90,12,8,0.02,0.03,4)
[1] 0.03797715
> #reduce longevity risk aversion
> IDDR.2(100,0.04,65,60,85,90,12,8,0.02,0.03,2)
[1] 0.04401157
> #raise pension
> IDDR.2(100,0.06,65,60,85,90,12,8,0.02,0.03,2)
[1] 0.04408307
> #lower rho
> IDDR.2(100,0.04,65,60,85,90,12,8,0.02,0.01,2)
[1] 0.03757515

Reducing my couple’s longevity risk aversion raised their spending. Increasing
their pension slightly raised their non pension spending as well. Lowering their
subjective discount factor d reduced their spending. All of these results are
consistent with economic and financial intuition that reducing fear of running out
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of money or raising the availability of funds through pension will cause spending to
rise, and reducing the utility drop resulting from postponing spending will make
spending now less valuable in comparison, and result in more saving and less
spending now.

11.2 Original Question
Assuming that �65 = $100 at the age of G = 65, with Gompertz parameter (< = 88,
and A = 2%, please investigate the relationship between the dispersion coefficient 1,
the pre-existing pension c and the intelligent drawdown rate IDDR(.).
Answer
To solve this problem, I create three vectors, each with a different dispersion
coefficient 1. For each vector I iterate through different pension values ranging
from 1 to 100 in increments of 10. At each iteration I apply the IDDR(.) function
and appended the results to the respective vector.

#Pension values to loop through
s<-c(1,10,20,30,40,50,60,70,80,90,100)
p1<-c()
for (i in s){
#b=5
p1<-append(p1,IDDR(100,i,65,88,5,0.02,0.02,1)*100)}

p2<-c()
for (i in s){
#b=10
p2<-append(p2,IDDR(100,i,65,88,10,0.02,0.02,1)*100)}

p3<-c()
for (i in s){
#b=15
p3<-append(p3,IDDR(100,i,65,88,15,0.02,0.02,1)*100)}

Here is the output.

> p1
[1] 6.377066 7.793895 8.726438 9.468860 10.074357
[6] 10.546692 11.080017 11.427953 11.918449 12.295531
[11] 12.651097
> p2
[1] 6.794214 9.352943 11.128742 12.482910 13.649742
[6] 14.679244 15.702202 16.577952 17.258080 18.001769
[11] 18.889284
> p3
[1] 6.640543 9.668014 11.753737 13.388118 14.831763
[6] 16.001966 17.207753 18.250559 19.222611 20.137462
[11] 21.004174



82 11 Solutions

The results displaying the relationship between the dispersion coefficient 1, the
pre-existing pension c, and the intelligent drawdown rate IDDR(.) can be seen in
the table below.

IDDR(.) values for various c and 1
c 1 = 5 1 = 10 1 = 15
1 6.37 6.79 6.64
10 7.79 9.35 9.67
20 8.73 11.13 11.75
30 9.47 12.48 13.39
40 10.07 13.65 14.83
50 10.55 14.68 16.00
60 11.08 15.70 17.21
70 11.43 16.58 18.25
80 11.92 17.26 19.22
90 12.30 18.00 20.14
100 12.65 18.89 21.00

I see that the higher the pension the stronger the impact of 1. Similarly the higher 1,
the greater the impact of raising pension. This makes sense, because the more
pension I will get, the more comfortable I am spending my non-pension money even
if I am uncertain about my longevity. i.e. higher values of c make me less worried
about running out of money, so if I add higher values of 1 on top of big pension,
now the main worry is dying early with plenty of money, so I must spend more.

11.3 Original Question
The wealth depletion time is a function that is embedded inside the IDDR(.)
function. Assuming that � = $100, that G = 65, (< = 88, 1 = 10) and
A = d = 2%, W = 4, please plot WDT as a function of c = $1 to c = $200. Describe
how the wealth depletion time is impacted by the pre-existing pension income.
Explain.
Answer
I generate an R script which plots WDT as a function of c = $1 to c = $200.

#define WDT function
WDT<-function(tau){
K1<-((Fx/pi+1/r)*exp(r*tau)-1/r)/
(GTLA(x-b*log(gam),tau,r-k,m,b)*exp(r*tau))

K2<-exp(k*tau)
K3<-TPXG(x,tau,m,b)^(1/gam)
K1*K2*K3-1}

#define parameters
Fx<-100;x<-65;m<-88;b<-10;r<-0.02;rho<-0.02;gam<-4
k<-(r-rho)/gam
#plot the roots of WDT which is wealth depletion time
plot(c(0,200),c(0,50),type="n",xlab="Annual Pension($)
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per $100 Nest Egg",
ylab="Wealth Depletion Time")

grid(ny=18,lty = 20)
for (i in 1:200){
pi<-i
points(i,uniroot(WDT,lower = 1,upper = 100)$root,
col="black",pch=1)}

abline(h=4,col="red")

The plot that is generated can be seen in the figure below.
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Based on the figure, it is clear that the higher the pension, the earlier I can deplete
my liquid assets, since the higher pension is guaranteed to provide for me.

11.4 Original Question
Assume that you are at age G = 65, that you have �G = $100, that
A = d = 2%, W = 4, and (< = 88, 1 = 10). Plot the relationship between c and the
intelligent drawdown rate, within the range of c = $1 to c = $200.
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Answer
I create a script in R to plot the relationship between c and the intelligent
drawdown rate, within the range of c = $1 to c = $200.

plot(c(0,200),c(0,25),type="n",xlab="Annual Pension($)
per $100 Nest Egg",

ylab="Intelligent Drawdown Rate(%)")
grid(ny=18,lty=20)
for(i in 1:200){
points(i,IDDR(100,i,65,88,10,0.02,0.02,4)*100,
col="black",pch=1)}

abline(h=4,col="red")

The plot that is generated can be seen in the following figure.

0 50 100 150 200

0
5

1
0

1
5

2
0

2
5

Annual Pension($) per $100 Nest Egg

In
te

lli
g
e
n
t 
D

ra
w

d
o
w

n
 R

a
te

(%
)

Increasing annual pension raises the intelligent drawdown rate, similarly to the
previous question. When I have more pension, I spend more from my liquid assets.

11.5 Original Question



11 Solutions 85

Assuming that � = $100, that G = 65, (< = 88, 1 = 10) and A = d = 2%, c = 10,
please plot WDT as a function of W = 1 to W = 10. Describe how the wealth
depletion time is impacted by longevity risk aversion. Explain.
Answer
I plot WDT as a function of W = 1 to W = 10, using the parameters above.

Fx<-100; x<-65; m<-88; b<-10; r<-0.02; rho<-0.02; pi<-10
plot(c(0,10),c(0,50),type="n",xlab="Longevity Risk
Aversion",ylab="

Wealth Depletion Time")
grid(ny=18,lty=20)
for(i in 1:10){
gam=i
points(i,uniroot(WDT,lower=1,upper=100)$root,
col="black",pch=1)}

abline(h=4,col="red")

Based on this script the following figure was generated.
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I see that increasing my longevity risk aversion raises my wealth depletion time,
since it causes me to reduce spending.



Chapter 12
Solutions

12.1 Original Question
Compute the contribution rate, B∗, for a copper-plated pension plan (CPP versus
GPP) that replaces 35% of your consumable income. In other words, if your real
disposable income is $100, and the contribution rate is B∗, the CPP would provide
you with (0.35) × $100 × (1 − B∗) for your entire life, starting at retirement age '.
Assume that you enter the system at age G = 25, contribute for 40 years until age
' = 65, and the plan provides a pension annuity until death, which is modeled as a
Gompertz variable with (< = 88, 1 = 10). Provide B∗ numbers for A = 1% and
A = 4%. Note that wage growth 6 is zero.
Answer
Similarly to section 12.2 from the chapter, I use the formula which calculates the
collective GPP contribution rate, but now I multiply the GDLA term by 0.35 to
account for the 35% of consumable income which the CPP provides.

B∗ × �)!� = 0.35 × (1 − B∗) × ��!�

B∗ × �)!� + 0.35 × B∗ × ��!� = 0.35 × ��!�

B∗ =
0.35 × ��!�

�)!� + 0.35 × ��!�

I set my parameters and calculate B∗ under a 1% valuation rate.

> x<-25;R<-65;m<-88;b<-10;r<-0.01
> 0.35*GDLA(x,R,r,m,b)/
(GTLA(x,R-x,r,m,b)+0.35*GDLA(x,R,r,m,b))

[1] 0.1052559
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I see that I must save 10.5% of my annual income to afford a copper-plated pension
plan, this allows me to spend 89.5% of my income, assuming the valuation rate is
1%. What happens if I assume a 4% valuation rate?

> r<-0.04
> 0.35*GDLA(x,R,r,m,b)/
(GTLA(x,R-x,r,m,b) +0.35*GDLA(x,R,r,m,b))

[1] 0.0407009

Under a 4% valuation rate I only need to save 4.1% of my income compared to the
10.5% of income I must save at a 1% valuation rate. Assuming a higher valuation
rate reduces the required pension contribution rate.

12.2 Original Question
Building on the CPP described in the prior question, i.e. a plan that replaces 35% of
your consumable income, now assume wage growth 6 > 0% per year. In other
words, at retirement your wage is $100 × (1 + 6)'−G , and the CPP replaces 35% of
that final wage times (1 − B∗). Remember (again) that your consumable income is
net of the CPP contributions. Compute B∗ values for A = 1% and A = 4%.
Answer
The main difference between this question and the previous question is that here the
temporary life annuity that reflects wages is an increasing annuity, and the deferred
annuity that reflects pension is a multiple of higher annual wage (the final wage
before retirement). To model the increasing wages, I create a modified version of
GTLA which I call GTLA.growth. This returns the actuarial present value of a
temporary life annuity that grows at a rate of 6 every year. I do this by multiplying
the value of the rgrid by (1 + 6)C .

GTLA.growth<-function(x,tau,v,m,b,g){
if (tau==0){0}
else {
dt<-1/52; grid<-ceiling(tau/dt); t<-(1:grid)*dt
pgrid<-exp(exp((x-m)/b)*(1-exp(t/b)))
#multiply rgrid by growth factor
rgrid<-exp(-v*t)*(1+g)^t
sum(pgrid*rgrid)*dt}}

I multiply GDLA by 0.35 × (1 + 6)'−G , since the pension payments will be
35% × (1 − B∗) of the final wage. Now I can compute B∗ values for A = 1% and
A = 4% using multiple values of 6.

#define parameters
x<-25;R<-65;m<-88;b<-10
#loop through r values
for (r in c(0.01,0.04)){
#loop through g values
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for (g in c(0.005,0.01,0.015,0.02)){
#calculate s
s<-0.35*GDLA(x,R,r,m,b)*(1+g)^(R-x)/
(GTLA.growth(x,R-x,r,m,b,g) +
0.35*GDLA(x,R,r,m,b)*(1+g)^(R-x))

print(c(s,r,g))}}

In the output, the first number in each row is the value of B∗, the second number is
the valuation rate, and the third number is the income growth rate 6.

[1] 0.1156581 0.0100000 0.0050000
[1] 0.1265248 0.0100000 0.0100000
[1] 0.137809 0.010000 0.015000
[1] 0.1494587 0.0100000 0.0200000
[1] 0.04585933 0.04000000 0.00500000
[1] 0.05146229 0.04000000 0.01000000
[1] 0.05751381 0.04000000 0.01500000
[1] 0.06401272 0.04000000 0.02000000

I see that raising 6 increases the percentage of income I must save each year. This is
intuitive since 6 has a bigger impact on the deferred pension income than it does on
my annual income. All my pension payments get multiplied by (1 + 6)'−G , but my
annual income payments are multiplied by lower powers of (1 + 6). If I want to
grow my pension by more than the growth of my wages, then I must save more.
Note, the pension income does not grow by 6 every year, it just starts at a higher
level and stays there.

12.3 Original Question
Assume (hypothetically) that you are G = 65 years-old, have � = $100 in liquid
wealth and are entitled to a pension annuity of c = $50. What level of longevity
risk-aversion W will lead to a wealth depletion time (WDT) of exactly g = 20 years,
that is you live on your pension (only) if you get to age (G + g) = 85. For this
question, assume that A = d = 4% and then do it again for A = d = 1%. Explain the
difference.
Answer
I start by calculating the fraction of my balance sheet that is pensioned k. I then
create my own function myfunc, which only takes one parameter W. Now myfunc
uses the function WDT.PSI from the chapter, to calculate wealth depletion time as a
function of k and subtracts 20 from it. Note that WDT.PSI uses the other previously
defined parameters, but myfunc only takes in W. I designed myfunc to only take W
as a parameter so that I can use uniroot to find the value of W that makes myfunc
zero.

#set parameters
Fx<-100; pi<-50; x<-65;m<-88; b<-10;
r<-0.04; rho<-0.04;
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#define psi
psi<-GILA(x,r,m,b)/(Fx/pi+GILA(x,r,m,b))
#define a function of gamma that returns WDT-20
myfunc<-function(gam){
WDT.PSI(psi,x,m,b,r,rho,gam)-20}

I find the root of myfunc, which is the value of W that makes WDT equal 20.

#find gamma value that makes myfunc = 0
> uniroot(myfunc,lower=1,upper=10)$root
[1] 3.410369

I see that for A = d = 4% my wealth depletion time is 20 years if my longevity risk
aversion value is 3.4. Now I repeat the process for A = d = 1%.

#set parameters
r<-0.01; rho<-0.01;
#define psi
psi<-GILA(x,r,m,b)/(Fx/pi+GILA(x,r,m,b))
#define a function of gamma that gives WDT-20
myfunc<-function(gam){
WDT.PSI(psi,x,m,b,r,rho,gam)-20}

#find gamma value that makes myfunc = 0
> uniroot(myfunc,lower=1,upper=10)$root
[1] 4.157554

Under a 1% valuation rate, I must have a W value of 4.2 in order for my wealth
depletion time to be 20 years. I see that for a lower A and d I require higher
longevity risk aversion to deplete my wealth at the same time. This makes sense
because lower valuation rates increase the value of the pension, thus increasing k.
A higher k reduces wealth depletion time, so a higher W is required to keep the
same wealth depletion time.

12.4 Original Question
Assume that you are G = 40 years old, plan to retire at age ' = 70, and haven’t yet
saved anything for retirement, so that �40 = $0. You are trying to create a personal
gold-plated pension plan, and trying to figure out how much to contribute, B∗, so
that you will have flat and constant consumption until age � = 95. Assume that
A = 4%. Now, what would that contribution rate be, if you became part of a
collective (DB) pension plan in which the average participant lives to age � = 90.
If you earn F = $100,000 per year, how much more would you be able to consume
(per year) if you joined such a program? Assume no growth, so that 6 = 0%, for
simplicity.
Answer
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To solve for B∗, under the personal gold-plated pension plan, I use equation 12.2
from the chapter.

B∗ =
RGOA(0, r, N2)

RGOA(0, r, N1) × (1 + A)N1 + RGOA(0, r, N2)

I set my parameters and code this equation.

x<-40;R<-70;D<-95;r<-0.04;w<-100000;g<-0;
s1<-RGOA(g,r,D-R)/(RGOA(g,r,R-x)*(1+r)^N1+RGOA(g,r,D-R))

Now assuming I became part of a collective (DB) pension plan in which the average
participant lives to age � = 90, for this I use equation 12.4 from the chapter.

B∗ =
GDLA(.)

GDLA(.) + GTLA(.)

Setting the Gompertz parameters and coding this equation.

m<-90;b<-10;
s2<-GDLA(x,R,r,m,b)/(GTLA(x,R-x,r,m,b)+GDLA(x,R,r,m,b))

Now I look at the the resulting contribution rate B∗ from both of these scenarios and
the difference in how much I can consume each year.

> s1
[1] 0.2178598
> s2
[1] 0.1570675
> (s1-s2)*w
[1] 6079.237

I see that under a personal pension plan I must save 22% of my annual income,
while in a collective plan I only need to save 16%. The collective pension plan
allows me to spend an extra $6,079 a year.

12.5 Original Question
Solve the above question (12.4), assuming that your wage grows (in real terms) by
d = 1%. How does the solution and answer change?
Answer
If I maintain a flat and constant consumption while my wages are growing, then the
percentage of my wages that I save (or spend) will differ every year. To deal with
this, I will calculate my flat consumption value which will be constant across all
years. For the personal pension, I can use the RGOA function. I divide the increasing
annuity factor representing the present value of my future wages, by the ordinary
annuity factor representing a fixed level of consumption until age 95.
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> x<-40;R<-70;D<-95;r<-0.04;w<-100000;g<-0.01
> c1<-RGOA(g,r,R-x)/RGOA(0,r,D-x)
> c1*w
[1] 88996.59
> 1-c1
[1] 0.1100341

Under a personal pension plan I can spend $88,997 a year until I am 95. In my first
year working I must save 11% of my income. To see how this compares to the
collective pension plan I use my GTLA.growth function defined in question 12.2.

GTLA.growth<-function(x,tau,v,m,b,g){
if (tau==0){0}
else {
dt<-1/52; grid<-ceiling(tau/dt); t<-(1:grid)*dt
pgrid<-exp(exp((x-m)/b)*(1-exp(t/b)))
#multiply rgrid by growth factor
rgrid<-exp(-v*t)*(1+g)^t
sum(pgrid*rgrid)*dt}}

I set my Gompertz parameters and divide the actuarial present value of my wages,
by the lifetime annuity factor representing my lifetime consumption.

> m<-90;b<-10;
> c2<-GTLA.growth(x,R-x,r,m,b,g)/GILA(x,r,m,b)
> c2*w
[1] 95166.72
> 1-c2
[1] 0.04833279

If I were part of a collective pension plan then I would be able to consume $95, 167
a year, and in my first year I would need to save 4.8% of my salary. Now I look at
the difference between the personal plan and the collective plan.

> w*(c1-c2)
[1] -6170.128

I see that the collective pension plan allows me to spend $6, 170 more each year
than what I could spend on a personal pension plan. When I compare this to the
previous question I see that the growth in income does not change the benefit I get
from switching to a collective plan, which is around $6, 100 in both cases. The
income growth does however require me to save less for retirement, regardless of
whether I take the personal pension or collective pension route. Note that in this
question I assumed smooth lifetime consumption, unlike in question 12.2 where
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consumption grew each year until retirement, and where I saved a fixed percentage
of my annual income and spent the rest.





Chapter 13
Solutions

13.1 Original Question
Create a series of four (4) plots of the probability density function (PDF) of
Gompertz-Makeham, using the par(mfrow=c(2,2)) command, for G = 60. Use
the parameter values _ = 3 × 10−5, and < = 75, < = 85 and 1 = 8, 1 = 12.
Compute � [)G] for all four combinations, using GMLE(.), and discuss the impact
of < and 1 on life expectancy.
Answer
I start by using par(mfrow=c(2,2) to create my 2×2 grid of plots. I then loop
through both < values and both 1 values and calculate and plot the PDF for each
(<, 1) pair. I get the values of the probability density function point-by-point using
GMPDF. For each (<, 1) pair I also use GMLE(.) to compute life expectancy.

#set up 2x2 for plots
par(mfrow=c(2,2))
#loop through m values
for (m in c(75,85)){
#loop through b values
for (b in c(8,12)){
#get PDF values for this (m,b)
for (i in 1:60){
x[i]<-GMPDF(60,i,0.00003,m,b)}

#set plot size and labels
plot(c(50,110),c(0,0.08),type="n",main=paste("m=",m,", b="
,b), xlab=" Age at Death",ylab="PDF Value")
#add gridlines for clarity
grid(ny=18,lty=20)
#plot the PDF values
lines(60:(59+length(x)),x,col="black",type="l",lwd=8)
#compute and print life expectancy
text(60,0.07,"E[Tx]+60=")
text(60,0.054,round(GMLE(60,0.00003,m,b),4)+60)}}
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The resulting figure of the four plots can be seen below.

50 60 70 80 90 100 110

0
.0

0
0

.0
4

0
.0

8

m= 75 , b= 8

 Age at Death

P
D

F
 V

a
lu

e

E[Tx]+60=

73.4768

50 60 70 80 90 100 110

0
.0

0
0

.0
4

0
.0

8

m= 75 , b= 12

 Age at Death

P
D

F
 V

a
lu

e

E[Tx]+60=

75.018

50 60 70 80 90 100 110

0
.0

0
0

.0
4

0
.0

8

m= 85 , b= 8

 Age at Death

P
D

F
 V

a
lu

e

E[Tx]+60=

81.653

50 60 70 80 90 100 110

0
.0

0
0

.0
4

0
.0

8

m= 85 , b= 12

 Age at Death

P
D

F
 V

a
lu

e

E[Tx]+60=

82.102

From the output I see that raising < obviously lifts life expectancy, but the
interesting thing is that raising 1 and keeping < constant, also lifts life expectancy.

13.2 Original Question
Derive an expression for the number of (calendar) years it takes your mortality rate
to triple under a pure Gompertz law (i.e. assuming the Makeham constant _ = 0),
assuming 1 = 1/6 = 10.
Answer
From section 13.2 in the chapter I know:

_G = (1/1)4 (G−<)/1

_G+I = (1/1)4 (G+I−<)/1

Now I must solve for I in the following equation:

_G+I/_G = 3

When I do this I get:
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4 (G+I−<)/1/4 (G−<)/1 = 3

4I/1 = 3
I/1 = ;=(3)
I = 1;=(3)

Assuming 1 = 1/6 = 10, it takes 10 × ;=(3) ≈ 11 years for my hazard rate to triple
under a pure Gompertz law.

13.3 Original Question
Using the compensation law of mortality, and the CLAM(.) function, please
compute the range of possible value of <, assuming that 1 ∈ [8, 12], that
G∗ ∈ [95, 105] and that ln[_∗] ∈ [−2, 0]. In other words, what are highest and
lowest possible values of <?
Answer
I solve for the range of < values using the CLAM(.) function while looping through
the other parameter ranges given in the question. One thing to notice is that the
question gives a range for ;=(_∗) but the CLAM(.) function takes in _∗ itself. I
accommodate this discrepancy by looping through values of _∗ ranging from 4 (−2)

to 40.

#create placeholder for m values
m<-c()
#loop through b
for (b in 8:12){
#loop through x_star
for(x_star in 95:105){
#loop through e^ln(lambda*)
for(lam_star in exp(-2:0)){
#calculate m and append to list
m<-append(m,CLAM(b,x_star,lam_star))}}}

I find the highest and lowest possible values of <.

> min(m)
[1] 65.18112
> max(m)
[1] 104.3645

The value of < ranges from 65.18 to 104.36.

13.4 Original Question
Please download one-year death rates from the HMD, for the period 2011 in
Australia and Lithuania (male or female), and use the algorithm in section #13.8 to
estimate the best fitting Gompertz-Makeham values of (_, ln[ℎ0], 6). Convert the
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numbers from the demographic reference frame (ℎ, 6) to the probabilistic reference
frame using (<, 1). Finally, compare your estimates to those in Table 13.1 or Table
13.2
Answer
I begin by downloading the 2011 period data for Australia and Lithuania as AUS
and LIT. I create a function Algo that takes in a vector of death rates, runs the
algorithm in section 13.8, and prints a list containing (_, ;=[ℎ0], 6). I can reuse this
function on the female and male vectors from Australia and Lithuania. I add a line
at the end of the algorithm that converts ln[ℎ0] and 6 to < and 1.

Algo<-function(qx){
x<-35:95
lambda_max<-min(qx)*10^5-1
gap<-c()
for (i in 1:lambda_max){
lambda<-i*10^(-5)
y<-log(log(1/(1-qx))-lambda)
fit<-lm(y~x)
gap[i]<-sigma(fit)}

lambda_makeham<-which.min(gap)*10^(-5)
y<-log(log(1/(1-qx))-lambda_makeham)
fit<-lm(y~x)
g<-as.numeric(fit$coefficients[2])
lnh<-as.numeric(fit$coefficients[1]-log((exp(g)-1)/g))
print(c(lambda_makeham*10^5,lnh,g))
#print m and b
print(c(-(lnh+log(1/g))/g,1/g))}

I run algo on my death rate vectors and get values for (_, ln[ℎ0], 6) and (<, 1).

> Algo(Aus$Female[36:96])
[1] 32.0000000 -12.3885604 0.1134517
[1] 90.01345 8.81432
> Algo(Aus$Male[36:96])
[1] 66.0000000 -11.8607350 0.1120088
[1] 86.346425 8.927872
> Algo(LIT$Female[36:96])
[1] 41.00000000 -10.64275246 0.09732001
[1] 85.41925 10.27538
> Algo(LIT$Male[36:96])
[1] 1.00000000 -8.14330310 0.07338789
[1] 75.37084 13.62623

I summarize my results in the table below.
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Country & Sex Makeham: _ Gompertz: < Gompertz: 1
Australia Female 32×10−5 90.01 8.81
Australia Male 66×10−5 86.35 8.93

Lithuania Female 41×10−5 85.42 10.28
Lithuania Male 1×10−5 75.37 13.63

Comparing to the values in table 13.1 and 13.2 in the chapter which I summarize in
the table below.

Country & Sex Makeham: _ Gompertz: < Gompertz: 1
Australia Female 30×10−5 90.40 9.00
Australia Male 63×10−5 86.78 9.16

Lithuania Female 38×10−5 85.70 10.45
Lithuania Male 1×10−5 75.75 14.01

I see that my < and 1 values are less than 0.5 away from the values in the chapter.
My _ values are within 3 × 10−5.

13.5 Original Question
Assuming that G∗ = 100 and that ln[_∗] = −1, which recall are the assumed
coordinates of the mortality plateau, use the LRAG(.) function to compute the
longevity-risk-adjusted age of an G = 55 year-old Russian versus Australian. Please
average the two corresponding (i.e. the Russian and the Australian) values of _ and
6, to obtain the required (average) _̂ and 6̂, which you need for the formula. Who is
“older” the 55-year-old Russian or the 55-year-old Australian? Explain.
Answer
I start by setting my parameters that are given in the question G∗ = 100 , _∗ = 4−1

and G = 55.

#set global parameters
x_star<-100
lam_star<-exp(-1)
x<-55

I then get the _, <, and 1 for males and females in Australia and Russia from Table
13.1 and 13.2 in the textbook. I will calculate a separate _̂ and 6̂ for males and for
females.

#Russian male lambda
lam.rm<-212*10^(-5)
#Australian male lambda
lam.am<-63*10^(-5)
#Russian male g = 1/b
g.rm<-1/13.99
#Australian male g = 1/b
g.am<-1/9.16



100 13 Solutions

#lambda hat for males
lam_hat.m<-mean(c(lam.rm,lam.am))
#g hat for males
g_hat.m<-mean(c(g.rm,g.am))

#Russian female lambda
lam.rf<-153*10^(-5)
#Australian female lambda
lam.af<-30*10^(-5)
#Russian female g = 1/b
g.rf<-1/9.67
#Australian female g = 1/b
g.af<-1/9.00
#lambda hat for females
lam_hat.f<-mean(c(lam.rf,lam.af))
#g hat for females
g_hat.f<-mean(c(g.rf,g.af))

I now use the LRAG function to calculate the longevity-risk-adjusted age for the
chronologically 55-year-old Russian and Australian males and females.

> #Russian male longevity risk adjusted age
> LRAG(x,x_star,g_hat.m,g.rm,lam_hat.m,lam.rm,lam_star)
[1] 64.93433
> #Australian male longevity risk adjusted age
> LRAG(x,x_star,g_hat.m,g.am,lam_hat.m,lam.am,lam_star)
[1] 42.04454
> #Russian female longevity risk adjusted age
> LRAG(x,x_star,g_hat.f,g.rf,lam_hat.f,lam.rf,lam_star)
[1] 58.12207
> #Australian female longevity risk adjusted age
> LRAG(x,x_star,g_hat.f,g.af,lam_hat.f,lam.af,lam_star)
[1] 50.72654

I see that from a longevity-risk-adjusted perspective, the Russian 55-year-old male
is 23 years "older" than the Australian male, and the Russian female is 8 years
"older" than the Australian female.
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Solutions

14.1 Original Question
Per the discussion around the Partial Differential Equation (14.9), create an R script
that solves for the value of the RCLA using the numerical scheme which is
described in great detail in the reference cited as [14]. This course assumes you
have experience solving a PDE. If not, skip right ahead to the next problem.
Answer
To be solved in version 2.0.

14.2 Original Question
Using the R script for the RCLA(.) value, confirm the values listed in Table 14.1
and compute the relevant numbers at the age of G = 60 and f = 25, and confirm
they all sit in between the values listed in the table.
Answer
I use the RCLA function given in the chapter, with G = 60 and f = 25, along with
the same <, 1, a, # parameters used in table 14.1. I run the function five times,
once for each b value in the table.

x1<-round(RCLA(60,88,10,0.03,0.25,0.01,50000),2)
x2<-round(RCLA(60,88,10,0.04,0.25,0.01,50000),2)
x3<-round(RCLA(60,88,10,0.05,0.25,0.01,50000),2)
x4<-round(RCLA(60,88,10,0.06,0.25,0.01,50000),2)
x5<-round(RCLA(60,88,10,Inf,0.25,0.01,50000),2)

Here is my output. Since this uses simulated random numbers, your output will
likely differ slightly.

> x1;x2;x3;x4;x5
[1] 4.00
[1] 5.59
[1] 7.06
[1] 8.38
[1] 21.14
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I summarize my values of the ruin-contingent life annuities (RCLA) in the table
below.

b = 3% b = 4% b = 5% b = 6% b = ∞
Age x=60 4.00 5.59 7.06 8.38 21.14

Comparing these to the values in table 14.1 where f = 30%.

b = 3% b = 4% b = 5% b = 6% b = ∞
Age x=55 7.12 8.95 10.46 11.85 24.46
Age x=65 3.39 4.57 5.64 6.62 17.88

I see that all my values sit between the values in Table 14.1.
14.3 Original Question
Modify the RCLA(.) code so that it assumes weekly and not monthly withdrawals,
and then recompute the numbers in Table 14.1. Are the RCLA values higher or
lower when the withdrawals are taken out weekly versus monthly? Is there a
consistent pattern? Explain intuitively why this might be the case.
Answer
I made the following modifications to the RCLA(.) code so that it assumes weekly
and not monthly withdrawals.

RCLA.weeks<-function(x,m,b,xi,sigma,r,N){
#replace months with weeks
wks<-52*(110-x)
path<-matrix(nrow=N,ncol=wks)
PLV<-c()
for (i in 1:N){
#sigma is now divided by root 52 instead of root 12
k2<-sigma/sqrt(52)
#r is divided by 52 instead of 12
k1<-r/52-(0.5)*k2^2
return<-exp(rnorm(wks,k1,k2))
path[i,1]<-1
for (j in 2:wks){
#xi is divided by 52 instead of 12
path[i,j]<-path[i,j-1]*return[j]-xi/52
if (path[i,j]<=0) {break}}
#the deferment time is converted from weeks to years

PLV[i]=GDLA(x,x+(j-2)/52,r,m,b)}
mean(PLV)}

I then use my RCLA.weeks function to recompute the values from table 14.1.

#set fixed parameters
m<-88
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b<-10
r<-0.01
N<-50000

#loop through changing parameters
for (sigma in c(0.15,0.30)){
for (x in c(55,65)){
for (xi in c(0.03,0.04,0.05,0.06,Inf)){
val<-round(RCLA.weeks(x,m,b,xi,sigma,r,N),2)
print(c(sigma,x,xi,val))}}}

Here is my output. The first three values in each row are f, G, and b, they are
followed by the RCLA value for those parameters.

[1] 0.15 55.00 0.03 3.08
[1] 0.15 55.00 0.04 5.35
[1] 0.15 55.00 0.05 7.59
[1] 0.15 55.00 0.06 9.53
[1] 0.15 55.00 Inf 24.46
[1] 0.15 65.00 0.03 1.03
[1] 0.15 65.00 0.04 2.14
[1] 0.15 65.00 0.05 3.40
[1] 0.15 65.00 0.06 4.68
[1] 0.15 65.00 Inf 17.88
[1] 0.30 55.00 0.03 7.06
[1] 0.30 55.00 0.04 8.91
[1] 0.30 55.00 0.05 10.45
[1] 0.30 55.00 0.06 11.79
[1] 0.30 55.00 Inf 24.46
[1] 0.30 65.00 0.03 3.34
[1] 0.30 65.00 0.04 4.55
[1] 0.30 65.00 0.05 5.61
[1] 0.30 65.00 0.06 6.59
[1] 0.30 65.00 Inf 17.88

These values are summarized in the tables below.

Value of RCLA assuming weekly withdrawals for f = 15%
Purchase Age b = 3% b = 4% b = 5% b = 6% b = ∞
Age x=55 3.08 5.35 7.59 9.53 24.46
Age x=65 1.03 2.14 3.40 4.68 17.88

Value of RCLA assuming weekly withdrawals for f = 30%
Purchase Age b = 3% b = 4% b = 5% b = 6% b = ∞
Age G = 55 7.06 8.91 10.45 11.79 24.46
Age G = 65 3.34 4.55 5.61 6.59 17.88
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Here is a table showing the differences between my values and the values in the
chapter in table 14.1.

Weekly withdrawals RCLA - Ordinary RCLA for f = 15%
Purchase Age b = 3% b = 4% b = 5% b = 6% b = ∞
Age x=55 -0.01 0-.05 -0.03 -0.06 0
Age x=65 0 0.01 -0.05 -0.03 0

Weekly withdrawals RCLA - Ordinary RCLA for f = 30%
Purchase Age b = 3% b = 4% b = 5% b = 6% b = ∞
Age G = 55 -0.06 -0.04 -0.01 -0.06 0
Age G = 65 -0.05 -0.02 -0.03 -0.03 0

When I compare my values here (weekly withdrawals), with the values from table
14.1 (monthly withdrawals), the numbers are very close, but usually a little bit
lower. The intuition is that the ordinary RCLA begins paying at the beginning of
the year when ruin occurs, but if we assume weekly withdrawals from the reference
portfolio, then the RCLA only begins paying at the beginning of the week of ruin.
The later we expect the RCLA to begin paying, the lower its value. Note that when
b = ∞, our reference portfolio and its withdrawals becomes irrelevant and the
RCLA is just a regular life annuity, and can be computed using the GILA function.

14.4 Original Question
Modify the RCLA(.) code to value a modified version that begins paying $1 for
life, as soon as the underlying reference index, which I denoted by �̃C , loses 80% of
its value. In other words, the payoff is not triggered by ruin, but by very bad
markets. Please generate numbers similar to Table 14.1, and compare results. How
much more expensive is such a product? Why?
Answer
I modify the RCLA function and create RCLA.loses80. This function checks to see
if the portfolio value is below 20%, and begins paying the deferred annuity at the
time that this is true.

RCLA.loses80<-function(x,m,b,xi,sigma,r,N){
mnths<-12*(110-x)
path<-matrix(nrow=N,ncol=mnths)
PLV<-c()
for (i in 1:N){
k2<-sigma/sqrt(12)
k1<-r/12-(0.5)*k2^2
return<-exp(rnorm(mnths,k1,k2))
path[i,1]<-1
for (j in 2:mnths){
path[i,j]<-path[i,j-1]*return[j]-xi/12
#look for drop below 20% instead of ruin
if (path[i,j]<=0.2) {break}}
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PLV[i]=GDLA(x,x+(j-2)/12,r,m,b)}
mean(PLV)}

I use this function to generate values similar to the values in table 14.1.

#set fixed parameters
m<-88
b<-10
r<-0.01
N<-50000

#loop through changing parameters
for (sigma in c(0.15,0.30)){
for (x in c(55,65)){
for (xi in c(0.03,0.04,0.05,0.06,Inf)){
val<-round(RCLA.loses80(x,m,b,xi,sigma,r,N),2)
print(c(sigma,x,xi,val))}}}

Here is my output. The first three values in each row are again f, G, and b.

[1] 0.15 55.00 0.03 5.68
[1] 0.15 55.00 0.04 8.01
[1] 0.15 55.00 0.05 10.13
[1] 0.15 55.00 0.06 11.95
[1] 0.15 55.00 Inf 24.46
[1] 0.15 65.00 0.03 2.55
[1] 0.15 65.00 0.04 3.92
[1] 0.15 65.00 0.05 5.31
[1] 0.15 65.00 0.06 6.59
[1] 0.15 65.00 Inf 17.88
[1] 0.30 55.00 0.03 10.80
[1] 0.30 55.00 0.04 12.07
[1] 0.30 55.00 0.05 13.26
[1] 0.30 55.00 0.06 14.27
[1] 0.30 55.00 Inf 24.46
[1] 0.30 65.00 0.03 6.17
[1] 0.30 65.00 0.04 7.08
[1] 0.30 65.00 0.05 7.96
[1] 0.30 65.00 0.06 8.68
[1] 0.30 65.00 Inf 17.88

My results are summarized in the table below.



106 14 Solutions

Value of Modified RCLA for f = 15%
Purchase Age b = 3% b = 4% b = 5% b = 6% b = ∞
Age x=55 5.68 8.01 10.13 11.95 24.46
Age x=65 2.55 3.92 5.31 6.59 17.88

Value of Modified RCLA) for f = 30%
Purchase Age b = 3% b = 4% b = 5% b = 6% b = ∞
Age G = 55 10.80 12.07 13.26 14.27 24.46
Age G = 65 6.17 7.08 7.96 8.68 17.88

Here is a table showing my values divided by those in table 14.1.

Modified RCLA divided by Ordinary RCLA for f = 15%
Purchase Age b = 3% b = 4% b = 5% b = 6% b = ∞
Age x=55 1.84 1.48 1.33 1.25 1
Age x=65 2.48 1.84 1.54 1.40 1

Modified RCLA divided by Ordinary RCLA for f = 30%
Purchase Age b = 3% b = 4% b = 5% b = 6% b = ∞
Age G = 55 1.52 1.35 1.27 1.20 0
Age G = 65 1.82 1.55 1.41 1.31 0

I see that the relative price of the modified RCLA becomes cheaper for higher b and
for higher volatility, but it becomes more expensive for higher age. This makes
sense intuitively because higher b means that if the portfolio loses 80% of its value
its very likely to get ruined very soon after. Higher volatility also raises the
likelihood of an 80% decline to be swiftly followed by ruin. Older age however
implies that the gap in time between an 80% decline and time of ruin is a larger
percentage of my remaining lifetime, thus the value of this product becomes
relatively more expensive than the ordinary RCLA.

14.5 Original Question
Finally, please modify (or create a new) R script that prices the following variant of
an RCLA. Namely, assume that you have �̃0 = $100, and are withdrawing at the
rate of b�̃0. But, if at the end of the year the portfolio value �̃C exceeds the original
�0, the withdrawal amount is ratcheted up and increased to b�̃C . So, for example, if
�̃1 = $200, by some lucky chance, then from that point onward the withdrawal
amount is doubled, but never reduced. What is the value of an RCLA that pays-off
$1 if-and-when this enhanced index is ruined?
Answer
I modify the RCLA function by creating a variable called Fmax to track the
maximum value of the portfolio. I initialize this value to 1. At each step in the path,
I check if the portfolio value exceeds Fmax, if it does, then I replace Fmax with the
portfolio value. When I am subtracting my consumption b from the portfolio value,
I multiply b by Fmax.
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RCLA.ratchet<-function(x,m,b,xi,sigma,r,N){
mnths<-12*(110-x)
path<-matrix(nrow=N,ncol=mnths)
PLV<-c()
for (i in 1:N){
k2<-sigma/sqrt(12)
k1<-r/12-(0.5)*k2^2
return<-exp(rnorm(mnths,k1,k2))
path[i,1]<-1
#initialize highest portfolio value
Fmax<-1
for (j in 2:mnths){
#multiply xi by highest portfolio value
path[i,j]<-path[i,j-1]*return[j]-(Fmax*xi/12)
if (path[i,j]<=0) {break}
#if portfolio value exceeded is max update the max
if (path[i,j]>Fmax){Fmax<-path[i,j]}}

PLV[i]=GDLA(x,x+(j-2)/12,r,m,b)}
mean(PLV)}

> x1<-round(RCLA.ratchet(60,88,10,0.03,0.25,0.01,50000),2)
> x2<-round(RCLA.ratchet(60,88,10,0.04,0.25,0.01,50000),2)
> x3<-round(RCLA.ratchet(60,88,10,0.05,0.25,0.01,50000),2)
> x4<-round(RCLA.ratchet(60,88,10,0.06,0.25,0.01,50000),2)
> x5<-round(RCLA.ratchet(60,88,10,Inf,0.25,0.01,50000),2)
>
> x1;x2;x3;x4;x5
[1] 5.46
[1] 7.33
[1] 8.84
[1] 10.11
[1] 21.14

The percentage difference between our values and those in question 14.2 are
36.5%, 31%, 25%, 21%, 0% for our respective choices of b. This means the
Ratcheted RCLA is relatively more expensive for lower values of b. This makes
sense intuitively, since the lower the value of b the more likely it becomes for the
portfolio to exceed its original value resulting in different spending paths from the
ordinary RCLA.


